Ivy is an open-source machine learning framework that enables you to:
- Use your ML models and/or functions in any framework by converting any code from one framework to another using
ivy.transpile
- Convert entire ML models and libraries between frameworks by generating identical source code in any frameworkusing
ivy.source_to_source
(currently in private beta)
The easiest way to set up Ivy is to install it using pip:
pip install ivy
Docker Images
Given the challenges of maintaining installations of various frameworks in a single environment,
users who would want to test ivy
with multiple frameworks at once can use our Docker images for a seamless experience.
You can pull the images from:
docker pull transpileai/ivy:latest # CPU
docker pull transpileai/ivy:latest-gpu # GPU
From Source
You can also install Ivy from source if you want to take advantage of the latest changes, but we can't ensure everything will work as expected 😅
git clone https://github.com/ivy-llc/ivy.git
cd ivy
pip install --user -e .
If you want to set up testing and various frameworks it's probably best to check out the Setting Up page, where OS-specific and IDE-specific instructions and video tutorials to do so are available!
Ivy's transpiler allows you convert code between different ML frameworks. Have a look at our Quickstart notebook to get a brief idea of the features!
The most important notebooks are:
Beyond that, based on the frameworks you want to convert code between, there are a few more examples further down this page 👇 which contain a number of models and libraries transpiled between PyTorch, JAX, TensorFlow and NumPy.
After installing ivy, you can start using it straight away, for example:
Transpiling any code from one framework to another
import ivy
import torch
import jax
def jax_fn(x):
a = jax.numpy.dot(x, x)
b = jax.numpy.mean(x)
return x * a + b
jax_x = jax.numpy.array([1., 2., 3.])
torch_x = torch.tensor([1., 2., 3.])
torch_fn = ivy.transpile(jax_fn, source="jax", to="torch", args=(jax_x,))
ret = torch_fn(torch_x)
Running your code with any backend
import ivy
import torch
import jax
ivy.set_backend("jax")
x = jax.numpy.array([1, 2, 3])
y = jax.numpy.array([3, 2, 1])
z = ivy.add(x, y)
ivy.set_backend('torch')
x = torch.tensor([1, 2, 3])
y = torch.tensor([3, 2, 1])
z = ivy.add(x, y)
The Examples page features a wide range of
demos and tutorials showcasing the functionalities of Ivy along with
multiple use cases, but feel free to check out some shorter
framework-specific examples here ⬇️
I'm using PyTorch
You can use Ivy to get PyTorch code from:Any model
From TensorFlow
import ivy import torch import tensorflow as tf # Get a pretrained keras model eff_encoder = tf.keras.applications.efficientnet_v2.EfficientNetV2B0( include_top=False, weights="imagenet", input_shape=(224, 224, 3) ) # Transpile it into a torch.nn.Module with the corresponding parameters noise = tf.random.normal(shape=(1, 224, 224, 3)) torch_eff_encoder = ivy.transpile(eff_encoder, source="tensorflow", to="torch", args=(noise,)) # Build a classifier using the transpiled encoder class Classifier(torch.nn.Module): def __init__(self, num_classes=20): super().__init__() self.encoder = torch_eff_encoder self.fc = torch.nn.Linear(1280, num_classes) def forward(self, x): x = self.encoder(x) return self.fc(x) # Initialize a trainable, customizable, torch.nn.Module classifier = Classifier() ret = classifier(torch.rand((1, 244, 244, 3)))From JAX
import ivy import jax import torch # Get a pretrained haiku model # https://github.com/unifyai/demos/blob/15c235f/scripts/deepmind_perceiver_io.py from deepmind_perceiver_io import key, perceiver_backbone # Transpile it into a torch.nn.Module with the corresponding parameters dummy_input = jax.random.uniform(key, shape=(1, 3, 224, 224)) params = perceiver_backbone.init(rng=key, images=dummy_input) ivy.set_backend("jax") backbone = ivy.transpile( perceiver_backbone, source="jax", to="torch", params_v=params, kwargs={"images": dummy_input} ) # Build a classifier using the transpiled backbone class PerceiverIOClassifier(torch.nn.Module): def __init__(self, num_classes=20): super().__init__() self.backbone = backbone self.max_pool = torch.nn.MaxPool2d((512, 1)) self.flatten = torch.nn.Flatten() self.fc = torch.nn.Linear(1024, num_classes) def forward(self, x): x = self.backbone(images=x) x = self.flatten(self.max_pool(x)) return self.fc(x) # Initialize a trainable, customizable, torch.nn.Module classifier = PerceiverIOClassifier() ret = classifier(torch.rand((1, 3, 224, 224)))Any library
From Tensorflow
import ivy import torch import os os.environ["SM_FRAMEWORK"] = "tf.keras" import segmentation_models as sm # transpile sm from tensorflow to torch torch_sm = ivy.transpile(sm, source="tensorflow", to="torch") # get some image-like arrays output = torch.rand((1, 3, 512, 512)) target = torch.rand((1, 3, 512, 512)) # and use the transpiled version of any function from the library! out = torch_sm.metrics.iou_score(output, target)From JAX
import ivy import rax import torch # transpile rax from jax to torch torch_rax = ivy.transpile(rax, source="jax", to="torch") # get some arrays scores = torch.tensor([2.2, 1.3, 5.4]) labels = torch.tensor([1.0, 0.0, 0.0]) # and use the transpiled version of any function from the library! out = torch_rax.poly1_softmax_loss(scores, labels)From NumPy
import ivy import torch import madmom # transpile madmon from numpy to torch torch_madmom = ivy.transpile(madmom, source="numpy", to="torch") # get some arrays freqs = torch.arange(20) * 10 # and use the transpiled version of any function from the library! out = torch_madmom.audio.filters.hz2midi(freqs)Any function
From Tensorflow
import ivy import tensorflow as tf import torch def loss(predictions, targets): return tf.sqrt(tf.reduce_mean(tf.square(predictions - targets))) # transpile any function from tf to torch torch_loss = ivy.transpile(loss, source="tensorflow", to="torch") # get some arrays p = torch.tensor([3.0, 2.0, 1.0]) t = torch.tensor([0.0, 0.0, 0.0]) # and use the transpiled version! out = torch_loss(p, t)From JAX
import ivy import jax.numpy as jnp import torch def loss(predictions, targets): return jnp.sqrt(jnp.mean((predictions - targets) ** 2)) # transpile any function from jax to torch torch_loss = ivy.transpile(loss, source="jax", to="torch") # get some arrays p = torch.tensor([3.0, 2.0, 1.0]) t = torch.tensor([0.0, 0.0, 0.0]) # and use the transpiled version! out = torch_loss(p, t)From NumPy
import ivy import numpy as np import torch def loss(predictions, targets): return np.sqrt(np.mean((predictions - targets) ** 2)) # transpile any function from numpy to torch torch_loss = ivy.transpile(loss, source="numpy", to="torch") # get some arrays p = torch.tensor([3.0, 2.0, 1.0]) t = torch.tensor([0.0, 0.0, 0.0]) # and use the transpiled version! out = torch_loss(p, t)
I'm using TensorFlow
You can use Ivy to get TensorFlow code from:Any model
From PyTorch
import ivy import torch import timm import tensorflow as tf # Get a pretrained pytorch model mlp_encoder = timm.create_model("mixer_b16_224", pretrained=True, num_classes=0) # Transpile it into a keras.Model with the corresponding parameters noise = torch.randn(1, 3, 224, 224) mlp_encoder = ivy.transpile(mlp_encoder, to="tensorflow", args=(noise,)) # Build a classifier using the transpiled encoder class Classifier(tf.keras.Model): def __init__(self): super().__init__() self.encoder = mlp_encoder self.output_dense = tf.keras.layers.Dense(units=1000, activation="softmax") def call(self, x): x = self.encoder(x) return self.output_dense(x) # Transform the classifier and use it as a standard keras.Model x = tf.random.normal(shape=(1, 3, 224, 224)) model = Classifier() ret = model(x)From JAX
import ivy import jax import tensorflow as tf # Get a pretrained haiku model # https://ivy.dev/demos/scripts/deepmind_perceiver_io.py from deepmind_perceiver_io import key, perceiver_backbone # Transpile it into a tf.keras.Model with the corresponding parameters dummy_input = jax.random.uniform(key, shape=(1, 3, 224, 224)) params = perceiver_backbone.init(rng=key, images=dummy_input) backbone = ivy.transpile( perceiver_backbone, to="tensorflow", params_v=params, args=(dummy_input,) ) # Build a classifier using the transpiled backbone class PerceiverIOClassifier(tf.keras.Model): def __init__(self, num_classes=20): super().__init__() self.backbone = backbone self.max_pool = tf.keras.layers.MaxPooling1D(pool_size=512) self.flatten = tf.keras.layers.Flatten() self.fc = tf.keras.layers.Dense(num_classes) def call(self, x): x = self.backbone(x) x = self.flatten(self.max_pool(x)) return self.fc(x) # Initialize a trainable, customizable, tf.keras.Model x = tf.random.normal(shape=(1, 3, 224, 224)) classifier = PerceiverIOClassifier() ret = classifier(x)Any library
From PyTorch
import ivy import kornia import requests import numpy as np import tensorflow as tf from PIL import Image # transpile kornia from torch to tensorflow tf_kornia = ivy.transpile(kornia, source="torch", to="tensorflow") # get an image url = "http://images.cocodataset.org/train2017/000000000034.jpg" raw_img = Image.open(requests.get(url, stream=True).raw) # convert it to the format expected by kornia img = np.array(raw_img) img = tf.transpose(tf.constant(img), (2, 0, 1)) img = tf.expand_dims(img, 0) / 255 # and use the transpiled version of any function from the library! out = tf_kornia.enhance.sharpness(img, 5)From JAX
import ivy import rax import tensorflow as tf # transpile rax from jax to tensorflow tf_rax = ivy.transpile(rax, source="jax", to="tensorflow") # get some arrays scores = tf.constant([2.2, 1.3, 5.4]) labels = tf.constant([1.0, 0.0, 0.0]) # and use the transpiled version of any function from the library! out = tf_rax.poly1_softmax_loss(scores, labels)From NumPy
import ivy import madmom import tensorflow as tf # transpile madmom from numpy to tensorflow tf_madmom = ivy.transpile(madmom, source="numpy", to="tensorflow") # get some arrays freqs = tf.range(20) * 10 # and use the transpiled version of any function from the library! out = tf_madmom.audio.filters.hz2midi(freqs)Any function
From PyTorch
import ivy import torch import tensorflow as tf def loss(predictions, targets): return torch.sqrt(torch.mean((predictions - targets) ** 2)) # transpile any function from torch to tensorflow tf_loss = ivy.transpile(loss, source="torch", to="tensorflow") # get some arrays p = tf.constant([3.0, 2.0, 1.0]) t = tf.constant([0.0, 0.0, 0.0]) # and use the transpiled version! out = tf_loss(p, t)From JAX
import ivy import jax.numpy as jnp import tensorflow as tf def loss(predictions, targets): return jnp.sqrt(jnp.mean((predictions - targets) ** 2)) # transpile any function from jax to tensorflow tf_loss = ivy.transpile(loss, source="jax", to="tensorflow") # get some arrays p = tf.constant([3.0, 2.0, 1.0]) t = tf.constant([0.0, 0.0, 0.0]) # and use the transpiled version! out = tf_loss(p, t)From NumPy
import ivy import numpy as np import tensorflow as tf def loss(predictions, targets): return np.sqrt(np.mean((predictions - targets) ** 2)) # transpile any function from numpy to tensorflow tf_loss = ivy.transpile(loss, source="numpy", to="tensorflow") # get some arrays p = tf.constant([3.0, 2.0, 1.0]) t = tf.constant([0.0, 0.0, 0.0]) # and use the transpiled version! out = tf_loss(p, t)
I'm using Jax
You can use Ivy to get JAX code from:Any model
From PyTorch
import ivy import timm import torch import jax import haiku as hk # Get a pretrained pytorch model mlp_encoder = timm.create_model("mixer_b16_224", pretrained=True, num_classes=0) # Transpile it into a hk.Module with the corresponding parameters noise = torch.randn(1, 3, 224, 224) mlp_encoder = ivy.transpile(mlp_encoder, source="torch", to="haiku", args=(noise,)) # Build a classifier using the transpiled encoder class Classifier(hk.Module): def __init__(self, num_classes=1000): super().__init__() self.encoder = mlp_encoder() self.fc = hk.Linear(output_size=num_classes, with_bias=True) def __call__(self, x): x = self.encoder(x) x = self.fc(x) return x def _forward_classifier(x): module = Classifier() return module(x) # Transform the classifier and use it as a standard hk.Module rng_key = jax.random.PRNGKey(42) x = jax.random.uniform(key=rng_key, shape=(1, 3, 224, 224), dtype=jax.numpy.float32) forward_classifier = hk.transform(_forward_classifier) params = forward_classifier.init(rng=rng_key, x=x) ret = forward_classifier.apply(params, None, x)From TensorFlow
import ivy import jax import haiku as hk import tensorflow as tf jax.config.update("jax_enable_x64", True) # Get a pretrained keras model eff_encoder = tf.keras.applications.efficientnet_v2.EfficientNetV2B0( include_top=False, weights="imagenet", input_shape=(224, 224, 3) ) # Transpile it into a hk.Module with the corresponding parameters noise = tf.random.normal(shape=(1, 224, 224, 3)) hk_eff_encoder = ivy.transpile(eff_encoder, source="tensorflow", to="haiku", args=(noise,)) # Build a classifier using the transpiled encoder class Classifier(hk.Module): def __init__(self, num_classes=1000): super().__init__() self.encoder = hk_eff_encoder() self.fc = hk.Linear(output_size=num_classes, with_bias=True) def __call__(self, x): x = self.encoder(x) x = self.fc(x) return x def _forward_classifier(x): module = Classifier() return module(x) # Transform the classifier and use it as a standard hk.Module rng_key = jax.random.PRNGKey(42) dummy_x = jax.random.uniform(key=rng_key, shape=(1, 224, 224, 3)) forward_classifier = hk.transform(_forward_classifier) params = forward_classifier.init(rng=rng_key, x=dummy_x) ret = forward_classifier.apply(params, None, dummy_x)Any library
From PyTorch
import ivy import kornia import requests import jax.numpy as jnp from PIL import Image jax.config.update("jax_enable_x64", True) # transpile kornia from torch to jax jax_kornia = ivy.transpile(kornia, source="torch", to="jax") # get an image url = "http://images.cocodataset.org/train2017/000000000034.jpg" raw_img = Image.open(requests.get(url, stream=True).raw) # convert it to the format expected by kornia img = jnp.transpose(jnp.array(raw_img), (2, 0, 1)) img = jnp.expand_dims(img, 0) / 255 # and use the transpiled version of any function from the library! out = jax_kornia.enhance.sharpness(img, 5)From TensorFlow
import ivy import jax import os os.environ["SM_FRAMEWORK"] = "tf.keras" import segmentation_models as sm # transpile sm from tensorflow to jax jax_sm = ivy.transpile(sm, source="tensorflow", to="jax") # get some image-like arrays key = jax.random.PRNGKey(23) key1, key2 = jax.random.split(key) output = jax.random.uniform(key1, (1, 3, 512, 512)) target = jax.random.uniform(key2, (1, 3, 512, 512)) # and use the transpiled version of any function from the library! out = jax_sm.metrics.iou_score(output, target)From NumPy
import ivy import madmom import jax.numpy as jnp # transpile madmon from numpy to jax jax_madmom = ivy.transpile(madmom, source="numpy", to="jax") # get some arrays freqs = jnp.arange(20) * 10 # and use the transpiled version of any function from the library! out = jax_madmom.audio.filters.hz2midi(freqs)Any function
From PyTorch
import ivy import torch import jax.numpy as jnp def loss(predictions, targets): return torch.sqrt(torch.mean((predictions - targets) ** 2)) # transpile any function from torch to jax jax_loss = ivy.transpile(loss, source="torch", to="jax") # get some arrays p = jnp.array([3.0, 2.0, 1.0]) t = jnp.array([0.0, 0.0, 0.0]) # and use the transpiled version! out = jax_loss(p, t)From TensorFlow
import ivy import tensorflow as tf import jax.numpy as jnp def loss(predictions, targets): return tf.sqrt(tf.reduce_mean(tf.square(predictions - targets))) # transpile any function from tf to jax jax_loss = ivy.transpile(loss, source="tensorflow", to="jax") # get some arrays p = jnp.array([3.0, 2.0, 1.0]) t = jnp.array([0.0, 0.0, 0.0]) # and use the transpiled version! out = jax_loss(p, t)From NumPy
import ivy import numpy as np import jax import jax.numpy as jnp jax.config.update('jax_enable_x64', True) def loss(predictions, targets): return np.sqrt(np.mean((predictions - targets) ** 2)) # transpile any function from numpy to jax jax_loss = ivy.transpile(loss, source="numpy", to="jax") # get some arrays p = jnp.array([3.0, 2.0, 1.0]) t = jnp.array([0.0, 0.0, 0.0]) # and use the transpiled version! out = jax_loss(p, t)
I'm using NumPy
You can use Ivy to get NumPy code from:Any library
From PyTorch
import ivy import kornia import requests import numpy as np from PIL import Image # transpile kornia from torch to np np_kornia = ivy.transpile(kornia, source="torch", to="numpy") # get an image url = "http://images.cocodataset.org/train2017/000000000034.jpg" raw_img = Image.open(requests.get(url, stream=True).raw) # convert it to the format expected by kornia img = np.transpose(np.array(raw_img), (2, 0, 1)) img = np.expand_dims(img, 0) / 255 # and use the transpiled version of any function from the library! out = np_kornia.enhance.sharpness(img, 5)From TensorFlow
import ivy import numpy as np import os os.environ["SM_FRAMEWORK"] = "tf.keras" import segmentation_models as sm # transpile sm from tensorflow to numpy np_sm = ivy.transpile(sm, source="tensorflow", to="numpy") # get some image-like arrays output = np.random.rand(1, 3, 512, 512).astype(dtype=np.float32) target = np.random.rand(1, 3, 512, 512).astype(dtype=np.float32) # and use the transpiled version of any function from the library! out = np_sm.metrics.iou_score(output, target)From Jax
import ivy import rax import numpy as np # transpile rax from jax to numpy np_rax = ivy.transpile(rax, source="jax", to="numpy") # get some arrays scores = np.array([2.2, 1.3, 5.4]) labels = np.array([1.0, 0.0, 0.0]) # and use the transpiled version of any function from the library! out = np_rax.poly1_softmax_loss(scores, labels)Any function
From PyTorch
import ivy import torch import numpy as np def loss(predictions, targets): return torch.sqrt(torch.mean((predictions - targets) ** 2)) # transpile any function from torch to numpy np_loss = ivy.transpile(loss, source="torch", to="numpy") # get some arrays p = np.array([3.0, 2.0, 1.0]) t = np.array([0.0, 0.0, 0.0]) # and use the transpiled version! out = np_loss(p, t)From TensorFlow
import ivy import tensorflow as tf import numpy as np def loss(predictions, targets): return tf.sqrt(tf.reduce_mean(tf.square(predictions - targets))) # transpile any function from tf to numpy np_loss = ivy.transpile(loss, source="tensorflow", to="numpy") # get some arrays p = np.array([3.0, 2.0, 1.0]) t = np.array([0.0, 0.0, 0.0]) # and use the transpiled version! out = np_loss(p, t)From JAX
import ivy import jax.numpy as jnp import numpy as np def loss(predictions, targets): return jnp.sqrt(jnp.mean((predictions - targets) ** 2)) # transpile any function from jax to numpy np_loss = ivy.transpile(loss, source="jax", to="numpy") # get some arrays p = np.array([3.0, 2.0, 1.0]) t = np.array([0.0, 0.0, 0.0]) # and use the transpiled version! out = np_loss(p, t)
For a more comprehensive overview, head over to the Demos section with more on the basics, a few guides and a wide-ranging set of examples that demonstrate the transpilation of various popular models. We continue to expand on that list, let us know what demos you'd like us to add next 🎯
Let's take a look at how Ivy works as a transpiler in more detail to get an idea of why and where to use it.
When is Ivy's transpiler useful?
If you want to use building blocks published in other frameworks (neural networks, layers, array computing libraries, training pipelines...), you want to integrate code developed in various frameworks, or maybe straight up migrate code from one framework to another or even between versions of the same framework, the transpiler is definitely the tool for the job! You can use the converted code just as if it was code originally developed in that framework, applying framework-specific optimizations or tools, instantly exposing your project to all of the unique perks of a different framework.
Ivy's transpiler allows you to use code from any other framework (or
from any other version of the same framework!) in your own code, by just
adding one line of code. Under the hood, Ivy traces a computational
graph and leverages the frontends and backends to link one version of one framework to another version of another framework.
This way, Ivy makes all ML-related projects available for you, independently of the framework you want to use to research, develop, or deploy systems. Feel free to head over to the docs for the full API reference, but the functions you'd most likely want to use are:
# Traces an efficient fully-functional graph from a function, removing all wrapping and redundant code. See usage in the documentation
ivy.trace_graph()
# Converts framework-specific code to a target framework of choice. See usage in the documentation
ivy.transpile()
# Converts framework-specific code to Ivy's framework-agnostic API. See usage in the documentation
ivy.unify()
These functions can be used eagerly or lazily. If you pass the necessary arguments for function tracing, the graph tracing/transpilation step will happen instantly (eagerly). Otherwise, the graph tracing/transpilation will happen only when the returned function is first invoked.
import ivy
import jax
ivy.set_backend("jax")
# Simple JAX function to transpile
def test_fn(x):
return jax.numpy.sum(x)
x1 = ivy.array([1., 2.])
# Arguments are available -> transpilation happens eagerly
eager_graph = ivy.transpile(test_fn, source="jax", to="torch", args=(x1,))
# eager_graph is now torch code and runs efficiently
ret = eager_graph(x1)
# Arguments are not available -> transpilation happens lazily
lazy_graph = ivy.transpile(test_fn, source="jax", to="torch")
# The transpiled graph is initialized, transpilation will happen here
ret = lazy_graph(x1)
# lazy_graph is now torch code and runs efficiently
ret = lazy_graph(x1)
If you want to learn more, you can find more information in the Ivy as a transpiler section of the docs!
You can find Ivy's documentation on the Docs page, which includes:
- Motivation: This contextualizes the problem Ivy is trying to solve by going over
- The current ML Explosion.
- Explaining why it is important to solve this problem.
- Explaining how we adhere to existing standards to make this happen.
- Related Work: Which paints a picture of the role Ivy plays in the ML stack, comparing it to other existing solutions in terms of functionalities and abstraction level.
- Design: A user-focused guide about the design decision behind the architecture and the main building blocks of Ivy.
- Deep Dive: Which delves deeper into the implementation details of Ivy and is oriented towards potential contributors to the code base.
We believe that everyone can contribute and make a difference. Whether it's writing code, fixing bugs, or simply sharing feedback, your contributions are definitely welcome and appreciated 🙌
Check out all of our Open Tasks, and find out more info in our Contributing guide in the docs! Or to immediately dive into a useful task, look for any failing tests on our Test Dashboard!
Join our growing community on a mission to make conversions between frameworks simple and accessible to all! Whether you are a seasoned developer or just starting out, you'll find a place here! Join the Ivy community on our Discord 👾 server, which is the perfect place to ask questions, share ideas, and get help from both fellow developers and the Ivy Team directly.
See you there!
If you use Ivy for your work, please don't forget to give proper credit by including the accompanying paper 📄 in your references. It's a small way to show appreciation and help to continue to support this and other open source projects 🙌
@article{lenton2021ivy,
title={Ivy: Templated deep learning for inter-framework portability},
author={Lenton, Daniel and Pardo, Fabio and Falck, Fabian and James, Stephen and Clark, Ronald},
journal={arXiv preprint arXiv:2102.02886},
year={2021}
}