diff --git a/configs/vision/pathology/online/segmentation/consep.yaml b/configs/vision/pathology/online/segmentation/consep.yaml index 06f181df..4935515b 100644 --- a/configs/vision/pathology/online/segmentation/consep.yaml +++ b/configs/vision/pathology/online/segmentation/consep.yaml @@ -3,8 +3,8 @@ trainer: class_path: eva.Trainer init_args: n_runs: &N_RUNS ${oc.env:N_RUNS, 1} - default_root_dir: &OUTPUT_ROOT ${oc.env:OUTPUT_ROOT, logs/${oc.env:MODEL_NAME, vit_small_patch16_224}/consep} - max_steps: &MAX_STEPS ${oc.env:MAX_STEPS, 513} + default_root_dir: &OUTPUT_ROOT ${oc.env:OUTPUT_ROOT, logs/${oc.env:MODEL_NAME, vit_small_patch16_224_dino}/consep} + max_steps: &MAX_STEPS ${oc.env:MAX_STEPS, 2000} log_every_n_steps: 6 callbacks: - class_path: eva.callbacks.ConfigurationLogger @@ -26,7 +26,7 @@ trainer: - class_path: lightning.pytorch.callbacks.EarlyStopping init_args: min_delta: 0 - patience: 100 + patience: 34 monitor: *MONITOR_METRIC mode: *MONITOR_METRIC_MODE logger: @@ -45,10 +45,10 @@ model: out_indices: ${oc.env:OUT_INDICES, 1} model_extra_kwargs: ${oc.env:MODEL_EXTRA_KWARGS, null} decoder: - class_path: eva.vision.models.networks.decoders.segmentation.ConvDecoderMS + class_path: eva.vision.models.networks.decoders.segmentation.ConvDecoderWithImage init_args: in_features: ${oc.env:IN_FEATURES, 384} - num_classes: &NUM_CLASSES 5 + num_classes: &NUM_CLASSES 5 criterion: class_path: eva.vision.losses.DiceLoss init_args: @@ -58,7 +58,7 @@ model: optimizer: class_path: torch.optim.AdamW init_args: - lr: ${oc.env:LR_VALUE, 0.002} + lr: ${oc.env:LR_VALUE, 0.0001} lr_scheduler: class_path: torch.optim.lr_scheduler.PolynomialLR init_args: diff --git a/configs/vision/pathology/online/segmentation/monusac.yaml b/configs/vision/pathology/online/segmentation/monusac.yaml index b7f7ec21..acf8d9e1 100644 --- a/configs/vision/pathology/online/segmentation/monusac.yaml +++ b/configs/vision/pathology/online/segmentation/monusac.yaml @@ -3,9 +3,9 @@ trainer: class_path: eva.Trainer init_args: n_runs: &N_RUNS ${oc.env:N_RUNS, 1} - default_root_dir: &OUTPUT_ROOT ${oc.env:OUTPUT_ROOT, logs/${oc.env:MODEL_NAME, vit_small_patch16_224}/monusac} - max_steps: &MAX_STEPS ${oc.env:MAX_STEPS, 550} - log_every_n_steps: 4 + default_root_dir: &OUTPUT_ROOT ${oc.env:OUTPUT_ROOT, logs/${oc.env:MODEL_NAME, vit_small_patch16_224_dino}/monusac} + max_steps: &MAX_STEPS ${oc.env:MAX_STEPS, 2000} + log_every_n_steps: 6 callbacks: - class_path: eva.callbacks.ConfigurationLogger - class_path: lightning.pytorch.callbacks.TQDMProgressBar @@ -26,7 +26,7 @@ trainer: - class_path: lightning.pytorch.callbacks.EarlyStopping init_args: min_delta: 0 - patience: 100 + patience: 50 monitor: *MONITOR_METRIC mode: *MONITOR_METRIC_MODE logger: @@ -45,10 +45,10 @@ model: out_indices: ${oc.env:OUT_INDICES, 1} model_extra_kwargs: ${oc.env:MODEL_EXTRA_KWARGS, null} decoder: - class_path: eva.vision.models.networks.decoders.segmentation.ConvDecoderMS + class_path: eva.vision.models.networks.decoders.segmentation.ConvDecoderWithImage init_args: in_features: ${oc.env:IN_FEATURES, 384} - num_classes: &NUM_CLASSES 5 + num_classes: &NUM_CLASSES 5 criterion: class_path: eva.vision.losses.DiceLoss init_args: @@ -59,7 +59,7 @@ model: optimizer: class_path: torch.optim.AdamW init_args: - lr: ${oc.env:LR_VALUE, 0.002} + lr: ${oc.env:LR_VALUE, 0.0001} lr_scheduler: class_path: torch.optim.lr_scheduler.PolynomialLR init_args: