-
Notifications
You must be signed in to change notification settings - Fork 1
/
server.R
executable file
·295 lines (247 loc) · 12.4 KB
/
server.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
# This code is to make ShinyR application for funMotifs database
# By Nour-al-dain Marzouka
# Modified by Husen M. Umer
# load the needed packages
library(RPostgreSQL)
library(DT)
library(plotly)
library(rjson)
library(pool)
library(DBI)
library(shiny)
library(data.table)
library(shinyjs)
# repress warnings
#options(warn=-1)
options()
# connect to the database
pool <- dbPool(
drv = dbDriver("PostgreSQL", max.con = 100),
dbname = "funmotifsdb",
host = "130.238.239.17",
user = "funmotifs",
password = "ks2018hum"#,
#idleTimeout = 3600000
)
onStop(function() { poolClose(pool) })
# get tissue names
temp_command <- "Select table_name from INFORMATION_SCHEMA.TABLES where TABLE_TYPE='BASE TABLE';"
tables <- dbGetQuery(pool, temp_command)$table_name
tables <- tables[grep(tables,pattern = "pg_",invert = T)]
tables <- tables[grep(tables,pattern = "sql_",invert = T)]
tables <- tables[grep(tables,pattern = "motif",invert = T)]
tables <- tables[grep(tables,pattern = "cell",invert = T)]
# query for the variants
make_command_SNP <- function(tissue_table, chr_table, start, end, ref, mut){
# fix the chromosome name
chr_table <- gsub(x = chr_table, pattern = "chr", replacement = "")
# get the table
temp_command <- paste0("select concat(chr,':', motifstart, '-', motifend) as motif_pos, name , score , pval , strand , fscore , chromhmm , contactingdomain , dnase__seq , fantom , loopdomain , numothertfbinding , othertfbinding , replidomain , tfbinding , tfexpr , (CASE WHEN (UPPER(posrange * int4range(",start,",",end,")) - LOWER(posrange * int4range(",start,",",end,"))>1) THEN 100 ELSE (CASE when STRAND='-' THEN (motifend-",start,") ELSE (",end,"-motifstart)+1 END) END) as mutposition from chr",chr_table,"motifs,",tissue_table," where chr",chr_table,"motifs.mid=",tissue_table,".mid and posrange && int4range(",start,",",end,",'(]') and tfexpr>0.0;")
query <- dbGetQuery(pool, temp_command)
#print("here")
#print(nrow(query))
if (nrow(query)==0) {return(data.frame(matrix(NA,nrow=1,ncol=20),stringsAsFactors = F))}
#get the entropy
query$entropy <- NA
for (i in 1:nrow(query)) {
name <- query[i, "name"]
mutposition <- query[i, "mutposition"]
if (mutposition != 100){
temp_command <- paste0("select ((select freq from motifs_pfm where position=",mutposition,
" and name='",name,"' and allele='",ref,
"') - (select freq from motifs_pfm where position=",mutposition,
" and name='",name,"' and allele='",mut,"') ) as entropy;")
query2 <- dbGetQuery(pool, temp_command)
query$entropy[i] <- query2[1,1]
} else {
query$entropy[i] <- 1
query$mutposition[i] <- 'multi'
}
}
return(query)
}
#make_command_SNP("blood",1,101190407,101190408,"C","A")
#### function to make command for a region
make_command_region <- function(tissue_table, chr_table, start, end){
# fix the chromosome name
chr_table <- gsub(x = chr_table, pattern = "chr", replacement = "")
temp_command <- paste0("select concat(chr,':', motifstart, '-', motifend) as motif_pos, name , score , pval , strand , fscore , chromhmm , contactingdomain , dnase__seq , fantom , loopdomain , numothertfbinding , othertfbinding , replidomain , tfbinding , tfexpr from chr",chr_table,"motifs , ",tissue_table," where chr",chr_table,"motifs.mid=",tissue_table,".mid and posrange && int4range(",start,",",end,",'(]') and tfexpr>0.0;")
#print(temp_command)
query <- dbGetQuery(pool, temp_command)
if (nrow(query)==0) {return(data.frame(matrix(NA,nrow=1,ncol=18),stringsAsFactors = F))}
return(query)
}
#### function to make command for all tissues
make_command_all_tissues <- function(chr_table, start, end){
# fix the chromosome name
chr_table <- gsub(x = chr_table, pattern = "chr", replacement = "")
temp_command <- paste0("select * from chr",chr_table,"motifs,all_tissues where chr",chr_table,
"motifs.mid=all_tissues.mid and posrange && int4range(",start,",",end,", '(]');")
query <- dbGetQuery(pool, temp_command)
if (nrow(query)==0) {return(data.frame(matrix(NA,nrow=1,ncol=22),stringsAsFactors = F))}
query <- query[, !colnames(query) %in% c("mid","posrange")]
return(query)
}
# function to prepare table from the user text
prepare_table_text <- function(text, sep){
if (text==""){
return(NULL)
} else {
text <- read.table(text=text,
sep = sep,
blank.lines.skip = T,
stringsAsFactors = F)
return(text)
}
}
#the limit of the file upload (50MB)
options(shiny.maxRequestSize=50*1024^2)
###########################################################
############### ShinyR server function ####################
###########################################################
shinyServer(function(input, output, session) {
# the tissue list
output$list_tissues <- renderUI({
selectInput("tissues", "Select a tissue",
sort(tables,decreasing = F),
width = 200,
selected = 'liver',
multiple = FALSE)
})
#create reactive list
reactive <- reactiveValues()
reactive$output_table <- NULL
# reading the user BED file or the text area
mydata <- reactive({
inFile <- input$user_file
if (is.null(inFile) & input$text_input_area == ""){
return(NULL)
}
if (input$text_input_area != "") {
tbl <- prepare_table_text(input$text_input_area, input$sep)
#validate(
# need(ncol(mydata()) > 1, "Please select the right seperator option!")
#)
}
if (!is.null(inFile)){
tbl <- read.csv(inFile$datapath,
header=input$header,
sep=input$sep,
dec = input$dec,stringsAsFactors = F)
}
return(tbl)
})
#The following table is shown in the user manual
column_headers <- data.table(Header = c("motif_pos", "name", "score", "pval", "strand", "fscore", "chromhmm", "contactingdomain", "dnase__seq", "fantom", "loopdomain", "numothertfbinding", "othertfbinding", "replidomain", "tfbinding", "tfexpr"), Description= c("Represents the chromsome number (1-25), start position of the overlapping motif (1-based), and end position of the overlapping motif", "TF name and motif ID", "Motif prediction score calculated by FIMO", "P-value for the motif prediction calculated by FIMO", "DNA strand", "Functionality score of the motif. This is a summarized score to indicate activity of the motif. It is computed using a ligistic regression model for details see the paper", "Chromatin states predicted based on histone modification marks using ChromHMM in the RoadMap Epigenomics project", "HiC contacting domain, the input region is overlapping one of the two sides of an interaction that is identified in HiC experiments. In cases where the tissue type does not have any HiC data, the average of tissue types with HiC contact domain at the loci are given.", "DNase1 hypersensitivity site, the value indicates the signal value as obtained from average DNas1 peaks across relevant data sets", "TSS expression at the loci as obtained from CAGE experiments in the FANTOM5 project ", "Similar to contactingdomain, but the region between the interaction points", "Number of TFs that are bound at the loci (excl. the matching TF)", "List of the bound TFs", "Replication timing category of the loci. ERD: arly replication domain; DTZ: down transition zone; LRD: late replication domain; UTZ: up transition zone", "Matching TF binding. A value above zero indicates evidence of binding. NA refers to the lack of data for the given factor", "Expression level of the TF in the tissue"))
output$tbl <- renderTable({ head( column_headers, n=20)})
# Display the user input
output$show_user_table <- renderTable({
validate(
need(ncol(mydata()) > 1, "Please enter or upload your input regions and select the right seperator option!")
)
head(mydata(),5)
})
# print the first 10 rows of the data
output$output_table <- renderTable({
if (is.null(input$tissues) | is.null(input$SNP_or_region) | is.null(mydata())) {
validate(
need(ncol(mydata()) >0, "Please enter or upload a list of genomic regions or variants in the left panel in 0-based BED format and select a tissue type!")
)
return (NULL)
} else {
validate(
need(ncol(mydata()) > 1, "Please select the right seperator option!")
)
# for all tissues
if (input$tissues == "all_tissues"){
make_command_all_tissues
x <- apply(mydata(),1,function(x){
make_command_all_tissues(chr_table = gsub(' ','',x[1],fixed = TRUE),
start = x[2],
end = x[3])
})
# merge the output with user columns
from_user <- mydata()[rep(row.names(mydata()), sapply(x, nrow)), 1:3]
colnames(from_user) <- c("chr","start","end")
x <- rbindlist(x)
x <- cbind(from_user,x)
reactive$output_table <- x
return(head(reactive$output_table)[,1:10])
}
# for regions
if (input$SNP_or_region == "region") {
validate(
need(ncol(mydata()) >= 3,
"Please select the right type of your input data (variants or genomic regions)!")
)
x <- apply(mydata(),1,function(x){
make_command_region(tissue_table = input$tissues,chr_table = gsub(' ','',x[1],fixed = TRUE),start = x[2],end = x[3])})
# merge the output with user columns
from_user <- mydata()[rep(row.names(mydata()), sapply(x, nrow)), 1:3]
colnames(from_user) <- c("chr","start","end")
x <- rbindlist(x)
x <- cbind(from_user,x)
reactive$output_table <- x
return(head(reactive$output_table)[,1:10])
}
# for variants
if (input$SNP_or_region == "variant") {
validate(
need(ncol(mydata()) >=5,
"Please select the right type of your input data (variants or genomic regions)!")
)
validate(
need(class(mydata()[1,4])=="character" & class(mydata()[1,5])=="character",
"Column 4 & column 5 should be characters!")
)
if (ncol(mydata())<5) {
return(NULL)
}
x <- apply(mydata(),1,function(x){
make_command_SNP(tissue_table = input$tissues,
chr_table = gsub(' ','',x[1],fixed = TRUE),
start = x[2],
end = x[3],
ref = x[4],
mut = x[5])
})
if (is.null(x)){return(NULL)}
num_row <- sapply(x, nrow)
num_row[num_row==0] <- 1
# print(num_row)
# merge the output with user columns
from_user <- mydata()[rep(row.names(mydata()), num_row), 1:5]
colnames(from_user) <- c("chr",
"start",
"end",
"ref",
"alt")
# print(from_user)
# print(x)
x <- rbindlist(x)
x <- cbind(from_user,x)
reactive$output_table <- x
return(head(reactive$output_table)[,1:12])
}
}})
# Downloadable csv of selected dataset ----
output$downloadData <- downloadHandler(
filename = function() {
paste("output_motifs.csv", sep = "")
},
content = function(file) {
x <- reactive$output_table
# check if the not found regions should be included or not
if (input$no_NAs) {
x <- x[!is.na(x[,"fscore"]),]
}
write.csv(x, file, row.names = FALSE)
}
)
output$downloadData_logical<- renderUI({
if(!is.null(mydata()) & !is.null(reactive$output_table)) {
downloadButton('downloadData', 'Download Output File')
}
})
}) # END of server