-
Notifications
You must be signed in to change notification settings - Fork 9
/
find_optimal_control_region.py
209 lines (176 loc) · 6.68 KB
/
find_optimal_control_region.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import argparse
import subprocess
import os
class CustomFormatter(argparse.ArgumentDefaultsHelpFormatter):
pass
__version__ = subprocess.check_output(["git", "describe", "--always"], cwd=os.path.dirname(os.path.realpath(__file__))).strip()
__short_hash__ = subprocess.check_output(["git", "rev-parse", "--short", "HEAD"], cwd=os.path.dirname(os.path.realpath(__file__))).strip()
parser = argparse.ArgumentParser(description='Author: A. Cukierman, G. Stark. v.{0}'.format(__version__),
formatter_class=lambda prog: CustomFormatter(prog, max_help_position=30))
parser.add_argument('--lumi', required=False, type=int, dest='lumi', metavar='<L>', help='luminosity to use', default=1)
parser.add_argument('-o', '--output', required=False, type=str, dest='output', metavar='', help='basename to use for output filename', default='output')
parser.add_argument('-d', '--output-dir', required=False, type=str, dest='output_dir', metavar='', help='directory to put it in', default='plots')
parser.add_argument("--run1_color", required=False, type=int, help="color of run 1 line", default=46)
parser.add_argument("--run1_csvfile", required=False, type=str, help="csv file containing run 1 exclusion points", default="run1_limit.csv")
parser.add_argument("--run1_1sigma_csvfile", required=False, type=str, help="csv file containing run 1 exclusion (+1 sigma) points", default="run1_limit_1sigma.csv")
parser.add_argument("--basedir", required=False, type=str, help="base directory", default="CR")
# parse the arguments, throw errors if missing any
args = parser.parse_args()
import ROOT
ROOT.PyConfig.IgnoreCommandLineOptions = True
ROOT.gROOT.SetBatch(True)
import csv
import glob
import re
import json
from collections import defaultdict
def init_canvas():
c = ROOT.TCanvas("c", "", 0, 0, 800, 600)
c.SetRightMargin(0.16)
c.SetTopMargin(0.07)
return c
def init_hist(label):
return ROOT.TH2F("grid", ";m_{#tilde{g}} [GeV]; m_{#tilde{#chi}^{0}_{1}} [GeV];%s" % label, 12, 800, 2000, 13, 0, 1300)
def set_bin(h, x, y, val):
# now, let's find the bin to fill
b = h.FindFixBin(x, y)
xx = yy = zz = ROOT.Long(0)
h.GetBinXYZ(b, xx, yy, zz)
if xx != 0 or yy != 0 or zz != 0:
print "bin was already set?\n\txx: {0}\n\tyy: {1}\n\tzz: {2}".format(xx, yy, zz)
print "x: {0}\ty: {1}".format(x, y)
print "new value: {0}".format(val)
print "-"*20
if val > 0:
h.SetBinContent(b, val)
else:
h.SetBinContent(b, 0.01)
def draw_hist(h, textFormat="1.0f"):
# now draw it
h.SetMarkerSize(800)
h.SetMarkerColor(ROOT.kWhite)
#ROOT.gStyle.SetPalette(51)
ROOT.gStyle.SetPaintTextFormat(textFormat)
h.Draw("TEXT COLZ")
def draw_text(args):
txt = ROOT.TLatex()
txt.SetNDC()
txt.DrawText(0.32,0.87,"Internal")
txt.DrawText(0.2,0.82,"Simulation")
#txt.SetTextSize(0.030)
txt.SetTextSize(18)
txt.DrawLatex(0.16,0.95,"#tilde{g}-#tilde{g} production, #tilde{g} #rightarrow t #bar{t} + #tilde{#chi}^{0}_{1}")
txt.DrawLatex(0.62,0.95,"L_{int} = %d fb^{-1}, #sqrt{s} = 13 TeV"% args.lumi)
txt.SetTextFont(72)
txt.SetTextSize(0.05)
txt.DrawText(0.2,0.87,"ATLAS")
txt.SetTextFont(12)
txt.SetTextAngle(38)
txt.SetTextSize(0.02)
txt.DrawText(0.33,0.63,"Kinematically Forbidden")
def fix_zaxis(h):
# fix the ZAxis
h.GetZaxis().SetRangeUser(1, 5)
h.GetZaxis().CenterLabels()
h.GetZaxis().SetTickLength(0)
h.SetContour(4)
h.GetZaxis().SetNdivisions(4, False)
def draw_line():
topmass = 173.34
l=ROOT.TLine(1000,1000,2000,2000)
l.SetLineStyle(2)
l.DrawLine(800,800-2*topmass,1300+2*topmass,1300)
import array
def get_run1(filename,linestyle,linewidth,linecolor):
x = array.array('f')
y = array.array('f')
n = 0
with open(filename,'r') as csvfile:
reader = csv.reader(csvfile, delimiter = ' ')
for row in reader:
n += 1
x.append(float(row[0]))
y.append(float(row[1]))
gr = ROOT.TGraph(n,x,y)
gr.SetLineColor(linecolor)
gr.SetLineWidth(linewidth)
gr.SetLineStyle(linestyle)
return gr
def draw_run1_text(color):
txt = ROOT.TLatex()
txt.SetNDC()
txt.SetTextFont(22)
txt.SetTextSize(0.04)
txt.SetTextColor(color)
txt.DrawText(0.2,0.2,"Run 1 Limit")
def draw_run1(args):
gr = get_run1(args.run1_csvfile, 1, 3, args.run1_color)
gr.Draw("C")
gr_1sigma = get_run1(args.run1_1sigma_csvfile, 3, 1, args.run1_color)
gr_1sigma.Draw("C")
draw_run1_text(args.run1_color)
def save_canvas(c, filename):
c.SaveAs(filename + ".pdf")
print "Saving file " + filename
c.Clear()
from rootpy.plotting.style import set_style, get_style
atlas = get_style('ATLAS')
atlas.SetPalette(51)
set_style(atlas)
# given a DID, we get the mass points, translates to a box on the graph for us
with open('mass_windows.txt', 'r') as f:
reader = csv.reader(f, delimiter='\t')
m = list(reader)
mdict = {l[0]: [int(l[1]),int(l[2]),int(l[3])] for l in m}
del m
# start up a dictionary to hold all information
significances = defaultdict(lambda: {1: 0, 2: 0, 3: 0, 4: 0})
p_did = re.compile(r's(\d+)\.b([a-fA-F\d]{32})\.json')
# for each signal region, build up the significance value
for i in range(1,5):
files = glob.glob(os.path.join(args.basedir, "CR{0:d}Significances_{1:d}".format(i, args.lumi), "s*.b*.json"))
for filename in files:
with open(filename, 'r') as f:
data = json.load(f)
did = p_did.search(filename).group(1)
significances[did][i] = data[0]['significance_scaled']
# find the winning CR
import operator
winners = {1: 0, 2: 0, 3: 0, 4: 0}
for did, vals in significances.iteritems():
winner = max(vals.iteritems(), key=operator.itemgetter(1))[0]
winners[winner] += 1
significances[did]['winner'] = winner
print winners
# do optimal signal regions
c = init_canvas()
h = init_hist("Optimal Control Region")
for did, vals in significances.iteritems():
winningCR = vals['winner']
mgluino, mstop, mlsp = mdict[did]
if mstop != 5000: continue
set_bin(h, mgluino, mlsp, winningCR)
draw_hist(h)
draw_text(args)
fix_zaxis(h)
draw_line()
save_canvas(c, '{0}_optimalCR_grid_lumi{1}'.format(os.path.join(args.output_dir, args.output), args.lumi))
# now make a plot of the actual significances
c = init_canvas()
h = init_hist("Significance of optimal CR")
for did, vals in significances.iteritems():
winningCR = vals['winner']
mgluino, mstop, mlsp = mdict[did]
if mstop != 5000: continue
set_bin(h, mgluino, mlsp, vals[winningCR])
draw_hist(h, "1.1f")
draw_text(args)
draw_line()
# THIS DOESN'T WORK WHY???
#draw_run1(args)
gr = get_run1(args.run1_csvfile, 1, 3, args.run1_color)
gr.Draw("C")
gr_1sigma = get_run1(args.run1_1sigma_csvfile, 3, 1, args.run1_color)
gr_1sigma.Draw("C")
draw_run1_text(args.run1_color)
save_canvas(c, '{0}_optimalCR_sig_lumi{1}'.format(os.path.join(args.output_dir, args.output), args.lumi))