-
Notifications
You must be signed in to change notification settings - Fork 4
/
hamiltonian-all.tex
28 lines (24 loc) · 2.14 KB
/
hamiltonian-all.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
%% LyX 1.6.10 created this file. For more info, see http://www.lyx.org/.
%% Do not edit unless you really know what you are doing.
\documentclass[english]{article}
\usepackage[T1]{fontenc}
\usepackage{a4}
\usepackage[hmargin=3cm,vmargin=3.5cm]{geometry}
\usepackage[latin9]{inputenc}
\usepackage{babel}
\begin{document}
\begin{eqnarray*}
H & = & -\sum_{<i,j>\sigma}t_{ij}c_{i\sigma}^{\dagger}c_{j\sigma}+U\sum_{i}n_{i\uparrow}n_{i\downarrow}-J\sum_{i\in D}\vec{S}_{Di}\cdot\vec{S}_{i}+\sum_{\sigma,i\in D}\varepsilon_{\mathrm{d}i\sigma}d_{i\sigma}^{\dagger}d_{i\sigma}+\frac{\omega_{0}}{2}\sum_{\left\langle i,j\right\rangle }\left|\vec{q}_{i}-\vec{q}_{j}\right|^{2}\end{eqnarray*}
where $S_{Di}^{z}=\left(d_{i\uparrow}^{\dagger}d_{i\uparrow}-d_{i\downarrow}^{\dagger}d_{i\downarrow}\right)/2$,
$S_{i}^{+}=c_{i\uparrow}^{\dagger}c_{i\downarrow}$, $S_{Di}^{+}=d_{i\uparrow}^{\dagger}d_{i\downarrow}$,
and \[
t_{ij}=t_{0}-\alpha\left|\vec{q}_{i}-\vec{q}_{j}\right|\]
Then\begin{eqnarray*}
\left\langle H_{U}\right\rangle & = & U\sum_{i}\left(\left\langle n_{i\uparrow}\right\rangle n_{i\downarrow}+n_{i\uparrow}\left\langle n_{i\downarrow}\right\rangle -\left\langle n_{i\uparrow}\right\rangle \left\langle n_{i\downarrow}\right\rangle \right)\\
\left\langle H_{J}\right\rangle & = & -J\sum_{i\in D}\left(\left\langle S_{Di}^{z}\right\rangle S_{i}^{z}+S_{Di}^{z}\left\langle S_{i}^{z}\right\rangle -\left\langle S_{Di}^{z}\right\rangle \left\langle S_{i}^{z}\right\rangle \right)-\frac{J}{2}\sum_{i\in D,\sigma}V_{i}\left(c_{i\sigma}^{\dagger}d_{i\sigma}+h.c.\right)-\frac{J}{2}\sum_{i\in D}V_{i}^{2}\end{eqnarray*}
where $S_{i}^{z}=\left(c_{i\uparrow}^{\dagger}c_{i\uparrow}-c_{i\downarrow}^{\dagger}c_{i\downarrow}\right)/2$,
$S_{Di}^{z}=\left(d_{i\uparrow}^{\dagger}d_{i\uparrow}-d_{i\downarrow}^{\dagger}d_{i\downarrow}\right)/2$,
$S_{i}^{+}=c_{i\uparrow}^{\dagger}c_{i\downarrow}$, $S_{Di}^{+}=d_{i\uparrow}^{\dagger}d_{i\downarrow}$
and \[
V_{i}=-\left\langle c_{i\uparrow}^{\dagger}d_{i\uparrow}+d_{i\downarrow}^{\dagger}c_{i\downarrow}\right\rangle =-\left\langle c_{i\downarrow}^{\dagger}d_{i\downarrow}+d_{i\uparrow}^{\dagger}c_{i\uparrow}\right\rangle .\]
\end{document}