forked from ANSSI-FR/libecc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sha256.c
198 lines (166 loc) · 5.05 KB
/
sha256.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
/*
* Copyright (C) 2017 - This file is part of libecc project
*
* Authors:
* Ryad BENADJILA <[email protected]>
* Arnaud EBALARD <[email protected]>
* Jean-Pierre FLORI <[email protected]>
*
* Contributors:
* Nicolas VIVET <[email protected]>
* Karim KHALFALLAH <[email protected]>
*
* This software is licensed under a dual BSD and GPL v2 license.
* See LICENSE file at the root folder of the project.
*/
#include "../lib_ecc_config.h"
#ifdef WITH_HASH_SHA256
#include "sha256.h"
/* SHA-2 core processing */
static void sha256_process(sha256_context *ctx,
const u8 data[SHA256_BLOCK_SIZE])
{
u32 a, b, c, d, e, f, g, h;
u32 W[64];
unsigned int i;
MUST_HAVE((ctx != NULL) && (data != NULL));
/* Init our inner variables */
a = ctx->sha256_state[0];
b = ctx->sha256_state[1];
c = ctx->sha256_state[2];
d = ctx->sha256_state[3];
e = ctx->sha256_state[4];
f = ctx->sha256_state[5];
g = ctx->sha256_state[6];
h = ctx->sha256_state[7];
for (i = 0; i < 16; i++) {
GET_UINT32_BE(W[i], data, 4 * i);
SHA2CORE_SHA256(a, b, c, d, e, f, g, h, W[i], K_SHA256[i]);
}
for (i = 16; i < 64; i++) {
SHA2CORE_SHA256(a, b, c, d, e, f, g, h, UPDATEW_SHA256(W, i),
K_SHA256[i]);
}
/* Update state */
ctx->sha256_state[0] += a;
ctx->sha256_state[1] += b;
ctx->sha256_state[2] += c;
ctx->sha256_state[3] += d;
ctx->sha256_state[4] += e;
ctx->sha256_state[5] += f;
ctx->sha256_state[6] += g;
ctx->sha256_state[7] += h;
}
/* Init hash function */
void sha256_init(sha256_context *ctx)
{
MUST_HAVE(ctx != NULL);
ctx->sha256_total = 0;
ctx->sha256_state[0] = 0x6A09E667;
ctx->sha256_state[1] = 0xBB67AE85;
ctx->sha256_state[2] = 0x3C6EF372;
ctx->sha256_state[3] = 0xA54FF53A;
ctx->sha256_state[4] = 0x510E527F;
ctx->sha256_state[5] = 0x9B05688C;
ctx->sha256_state[6] = 0x1F83D9AB;
ctx->sha256_state[7] = 0x5BE0CD19;
}
/* Update hash function */
void sha256_update(sha256_context *ctx, const u8 *input, u32 ilen)
{
const u8 *data_ptr = input;
u32 remain_ilen = ilen;
u16 fill;
u8 left;
MUST_HAVE((ctx != NULL) && (input != NULL));
/* Nothing to process, return */
if (ilen == 0) {
return;
}
/* Get what's left in our local buffer */
left = ctx->sha256_total & 0x3F;
fill = SHA256_BLOCK_SIZE - left;
ctx->sha256_total += ilen;
if ((left > 0) && (remain_ilen >= fill)) {
/* Copy data at the end of the buffer */
local_memcpy(ctx->sha256_buffer + left, data_ptr, fill);
sha256_process(ctx, ctx->sha256_buffer);
data_ptr += fill;
remain_ilen -= fill;
left = 0;
}
while (remain_ilen >= SHA256_BLOCK_SIZE) {
sha256_process(ctx, data_ptr);
data_ptr += SHA256_BLOCK_SIZE;
remain_ilen -= SHA256_BLOCK_SIZE;
}
if (remain_ilen > 0) {
local_memcpy(ctx->sha256_buffer + left, data_ptr, remain_ilen);
}
return;
}
/* Finalize */
void sha256_final(sha256_context *ctx, u8 output[SHA256_DIGEST_SIZE])
{
unsigned int block_present = 0;
u8 last_padded_block[2 * SHA256_BLOCK_SIZE];
MUST_HAVE((ctx != NULL) && (output != NULL));
/* Fill in our last block with zeroes */
local_memset(last_padded_block, 0, sizeof(last_padded_block));
/* This is our final step, so we proceed with the padding */
block_present = ctx->sha256_total % SHA256_BLOCK_SIZE;
if (block_present != 0) {
/* Copy what's left in our temporary context buffer */
local_memcpy(last_padded_block, ctx->sha256_buffer,
block_present);
}
/* Put the 0x80 byte, beginning of padding */
last_padded_block[block_present] = 0x80;
/* Handle possible additional block */
if (block_present > (SHA256_BLOCK_SIZE - 1 - sizeof(u64))) {
/* We need an additional block */
PUT_UINT64_BE(8 * ctx->sha256_total, last_padded_block,
(2 * SHA256_BLOCK_SIZE) - sizeof(u64));
sha256_process(ctx, last_padded_block);
sha256_process(ctx, last_padded_block + SHA256_BLOCK_SIZE);
} else {
/* We do not need an additional block */
PUT_UINT64_BE(8 * ctx->sha256_total, last_padded_block,
SHA256_BLOCK_SIZE - sizeof(u64));
sha256_process(ctx, last_padded_block);
}
/* Output the hash result */
PUT_UINT32_BE(ctx->sha256_state[0], output, 0);
PUT_UINT32_BE(ctx->sha256_state[1], output, 4);
PUT_UINT32_BE(ctx->sha256_state[2], output, 8);
PUT_UINT32_BE(ctx->sha256_state[3], output, 12);
PUT_UINT32_BE(ctx->sha256_state[4], output, 16);
PUT_UINT32_BE(ctx->sha256_state[5], output, 20);
PUT_UINT32_BE(ctx->sha256_state[6], output, 24);
PUT_UINT32_BE(ctx->sha256_state[7], output, 28);
}
void sha256_scattered(const u8 **inputs, const u32 *ilens,
u8 output[SHA256_DIGEST_SIZE])
{
sha256_context ctx;
int pos = 0;
sha256_init(&ctx);
while (inputs[pos] != NULL) {
sha256_update(&ctx, inputs[pos], ilens[pos]);
pos += 1;
}
sha256_final(&ctx, output);
}
void sha256(const u8 *input, u32 ilen, u8 output[SHA256_DIGEST_SIZE])
{
sha256_context ctx;
sha256_init(&ctx);
sha256_update(&ctx, input, ilen);
sha256_final(&ctx, output);
}
#else /* WITH_HASH_SHA256 */
/*
* Dummy definition to avoid the empty translation unit ISO C warning
*/
typedef int dummy;
#endif /* WITH_HASH_SHA256 */