diff --git a/eoglearn/io/eegeyenet.py b/eoglearn/io/eegeyenet.py index 8c6fbe0..54b65dd 100644 --- a/eoglearn/io/eegeyenet.py +++ b/eoglearn/io/eegeyenet.py @@ -1,9 +1,7 @@ from importlib import import_module -import numpy as np - import mne -from mne._fiff.constants import FIFF +import numpy as np def _check_pymatreader_installed(): diff --git a/eoglearn/io/tests/test_io.py b/eoglearn/io/tests/test_io.py index 5745df7..f967263 100644 --- a/eoglearn/io/tests/test_io.py +++ b/eoglearn/io/tests/test_io.py @@ -1,4 +1,3 @@ -import numpy as np from mne._fiff.constants import FIFF diff --git a/eoglearn/models/model.py b/eoglearn/models/model.py index 0f28a2f..0f2a0b1 100644 --- a/eoglearn/models/model.py +++ b/eoglearn/models/model.py @@ -6,7 +6,6 @@ import matplotlib.pyplot as plt import mne import numpy as np -import mne from mne.utils import logger from sklearn.preprocessing import StandardScaler from tensorflow.keras.layers import LSTM @@ -19,28 +18,26 @@ class EOGDenoiser: """Use simultaneous EEG and Eyetracking to Denoise EOG from the EEG data. - Parameters - ---------- + Parameters + ---------- raw : mne.io.Raw An instance of ``mne.io.Raw``, with EEG, eyegaze, and pupil channels. downsample : int The factor by which to downsample the EEG and eyetracking data. EEG channels - will be low-pass filtered before downsampling using ``mne.io.filter.resample``. - Eyetracking channels will be decimated without any filtering. resampling and - decimating will be done on copies of the data, so the original input data will - be preserved. + will be low-pass filtered before downsampling using + ``mne.io.filter.resample``. Eyetracking channels will be decimated without + any filtering. resampling and decimating will be done on copies of the data, + so the original input data will be preserved. n_units : int The number of units to pass into the initial LSTM layer. Defaults to 50. n_times : int - The number of timepoints to pass into the LSTM model at once. Defaults to 100. + The number of timepoints to pass into the LSTM model at once. Defaults to + 100. noise_picks: list | None Channels that contain the noise channels. - <<<<<<< HEAD - ======= - >>>>>>> lina/main - Attributes - ---------- + Attributes + ---------- raw : mne.io.Raw The original input ``mne.io.Raw`` instance. downsample : int @@ -72,8 +69,8 @@ class EOGDenoiser: i.e. ``(n_samples, n_meeg_channels)`` of the input :class:`~mne.io.Raw` object. - Notes - ----- + Notes + ----- See the MNE-Python tutorial on aligning EEG and eyetracking data for information on how to create a raw object with both EEG and eyetracking channels. """