forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 4
/
lr.py
40 lines (32 loc) · 1.55 KB
/
lr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from paddle.optimizer.lr import LRScheduler
class CosineAnnealingWithWarmupDecay(LRScheduler):
def __init__(self, max_lr, min_lr, warmup_step, decay_step, last_epoch=0, verbose=False):
self.decay_step = decay_step
self.warmup_step = warmup_step
self.max_lr = max_lr
self.min_lr = min_lr
super(CosineAnnealingWithWarmupDecay, self).__init__(max_lr, last_epoch, verbose)
def get_lr(self):
if self.warmup_step > 0 and self.last_epoch <= self.warmup_step:
return float(self.max_lr) * (self.last_epoch) / self.warmup_step
if self.last_epoch > self.decay_step:
return self.min_lr
num_step_ = self.last_epoch - self.warmup_step
decay_step_ = self.decay_step - self.warmup_step
decay_ratio = float(num_step_) / float(decay_step_)
coeff = 0.5 * (math.cos(math.pi * decay_ratio) + 1.0)
return self.min_lr + coeff * (self.max_lr - self.min_lr)