-
Notifications
You must be signed in to change notification settings - Fork 0
/
fnexecutar.m
43 lines (40 loc) · 1.43 KB
/
fnexecutar.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
% ------------------------------------------------------------------------------------------------------------
% Oct 2022 - written by Luisa Lucchese
% Please cite our papers:
% Paper #1
% Lucchese et al. 2021
% Investigation of the influence of nonoccurrence sampling on landslide
% susceptibility assessment using Artificial Neural Networks
% Paper #2
% Lucchese et al. 2020
% Attribute selection using correlations and principal components for
% artificial neural networks employment for landslide
% susceptibility assessment
% Paper #3
% Lucchese et al.
% Landslide susceptibility and spatially distributed antecedent rainfall
% thresholds: a multiple-output Artificial Neural Network modeling approach
%
% The licence that applies for this code is
% Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
% ------------------------------------------------------------------------------------------------------------
function [ S ] = fnexecutar( rn,P )
%UNTITLED2 Summary of this function goes here
% Detailed explanation goes here
eesc=eval(rn.ent.esc);
epar=rn.ent.par;
ifat=eval(rn.int.fat);
sfat=eval(rn.sai.fat);
srec=eval(rn.sai.rec);
spar=rn.sai.par;
wh=rn.int.sin(:,1:(end-1));
bh=rn.int.sin(:,end);
ws=rn.sai.sin(:,1:(end-1));
bs=rn.sai.sin(:, end);
u=ones(1, size(P, 2));
p=eesc(P, epar, u);
%whos p wh
h=ifat(wh*p+bh*u);
s=sfat(ws*h+bs*u);
S=srec(s, spar, u);
end