forked from Traumflug/Teacup_Firmware
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dda.h
164 lines (133 loc) · 5.46 KB
/
dda.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
#ifndef _DDA_H
#define _DDA_H
#include <stdint.h>
#include "config.h"
// Used in distance calculation during DDA setup
/// micrometers per step X
#define UM_PER_STEP_X 1000L / ((uint32_t) STEPS_PER_MM_X)
/// micrometers per step Y
#define UM_PER_STEP_Y 1000L / ((uint32_t) STEPS_PER_MM_Y)
/// micrometers per step Z
#define UM_PER_STEP_Z 1000L / ((uint32_t) STEPS_PER_MM_Z)
/// micrometers per step E
#define UM_PER_STEP_E 1000L / ((uint32_t) STEPS_PER_MM_E)
#ifdef ACCELERATION_REPRAP
#ifdef ACCELERATION_RAMPING
#error Cant use ACCELERATION_REPRAP and ACCELERATION_RAMPING together.
#endif
#endif
/*
types
*/
// target is simply a point in space/time
typedef struct {
int32_t X;
int32_t Y;
int32_t Z;
int32_t E;
uint32_t F;
} TARGET;
/**
\struct MOVE_STATE
\brief this struct is made for tracking the current state of the movement
Parts of this struct are initialised only once per reboot, so make sure dda_step() leaves them with a value compatible to begin a new movement at the end of the movement. Other parts are filled in by dda_start().
*/
typedef struct {
// bresenham counters
int32_t x_counter; ///< counter for total_steps vs this axis
int32_t y_counter; ///< counter for total_steps vs this axis
int32_t z_counter; ///< counter for total_steps vs this axis
int32_t e_counter; ///< counter for total_steps vs this axis
// step counters
uint32_t x_steps; ///< number of steps on X axis
uint32_t y_steps; ///< number of steps on Y axis
uint32_t z_steps; ///< number of steps on Z axis
uint32_t e_steps; ///< number of steps on E axis
#ifdef ACCELERATION_RAMPING
/// counts actual steps done
uint32_t step_no;
/// time until next step
uint32_t c;
/// tracking variable
int16_t n;
#endif
} MOVE_STATE;
/**
\struct DDA
\brief this is a digital differential analyser data struct
This struct holds all the details of an individual multi-axis move, including pre-calculated acceleration data.
This struct is filled in by dda_create(), called from enqueue(), called mostly from gcode_process() and from a few other places too (eg \file homing.c)
*/
typedef struct {
/// this is where we should finish
TARGET endpoint;
union {
struct {
// status fields
uint8_t nullmove :1; ///< bool: no axes move, maybe we wait for temperatures or change speed
uint8_t live :1; ///< bool: this DDA is running and still has steps to do
#ifdef ACCELERATION_REPRAP
uint8_t accel :1; ///< bool: speed changes during this move, run accel code
#endif
// wait for temperature to stabilise flag
uint8_t waitfor_temp :1; ///< bool: wait for temperatures to reach their set values
// directions
uint8_t x_direction :1; ///< direction flag for X axis
uint8_t y_direction :1; ///< direction flag for Y axis
uint8_t z_direction :1; ///< direction flag for Z axis
uint8_t e_direction :1; ///< direction flag for E axis
};
uint8_t allflags; ///< used for clearing all flags
};
// distances
uint32_t x_delta; ///< number of steps on X axis
uint32_t y_delta; ///< number of steps on Y axis
uint32_t z_delta; ///< number of steps on Z axis
uint32_t e_delta; ///< number of steps on E axis
/// total number of steps: set to \f$\max(\Delta x, \Delta y, \Delta z, \Delta e)\f$
uint32_t total_steps;
// linear acceleration variables: c and end_c are 24.8 fixed point timer values, n is the tracking variable
#ifndef ACCELERATION_RAMPING
uint32_t c; ///< time until next step
#endif
#ifdef ACCELERATION_REPRAP
uint32_t end_c; ///< time between 2nd last step and last step
int32_t n; ///< precalculated step time offset variable. At every step we calculate \f$c = c - (2 c / n)\f$; \f$n+=4\f$. See http://www.embedded.com/columns/technicalinsights/56800129?printable=true for full description
#endif
#ifdef ACCELERATION_RAMPING
/// number of steps accelerating
uint32_t rampup_steps;
/// number of last step before decelerating
uint32_t rampdown_steps;
/// 24.8 fixed point timer value, maximum speed
uint32_t c_min;
#endif
} DDA;
/*
variables
*/
/// steptimeout is set to zero when we step, and increases over time so we can turn the motors off when they've been idle for a while
/// It is also used inside and outside of interrupts, which is why it has been made volatile
extern volatile uint8_t steptimeout;
/// startpoint holds the endpoint of the most recently created DDA, so we know where the next one created starts. could also be called last_endpoint
extern TARGET startpoint;
/// current_position holds the machine's current position. this is only updated when we step, or when G92 (set home) is received.
extern TARGET current_position;
/*
methods
*/
uint32_t approx_distance( uint32_t dx, uint32_t dy ) __attribute__ ((hot));
uint32_t approx_distance_3( uint32_t dx, uint32_t dy, uint32_t dz ) __attribute__ ((hot));
// const because return value is always the same given the same v
const uint8_t msbloc (uint32_t v) __attribute__ ((const));
// initialize dda structures
void dda_init(void);
// create a DDA
void dda_create(DDA *dda, TARGET *target);
// start a created DDA (called from timer interrupt)
void dda_start(DDA *dda) __attribute__ ((hot));
// DDA takes one step (called from timer interrupt)
void dda_step(DDA *dda) __attribute__ ((hot));
// update current_position
void update_position(void);
#endif /* _DDA_H */