NOTE: You can use the main branch of the YOLOX repo to convert all model versions.
- Convert model
- Compile the lib
- Edit the config_infer_primary_yolox file
- Edit the deepstream_app_config file
- Testing the model
git clone https://github.com/Megvii-BaseDetection/YOLOX.git
cd YOLOX
pip3 install -r requirements.txt
python3 setup.py develop
pip3 install onnx onnxslim onnxruntime
NOTE: It is recommended to use Python virtualenv.
Copy the export_yolox.py
file from DeepStream-Yolo/utils
directory to the YOLOX
folder.
Download the pth
file from YOLOX releases (example for YOLOX-s)
wget https://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0/yolox_s.pth
NOTE: You can use your custom model.
Generate the ONNX model file (example for YOLOX-s)
python3 export_yolox.py -w yolox_s.pth -c exps/default/yolox_s.py --dynamic
NOTE: To simplify the ONNX model (DeepStream >= 6.0)
--simplify
NOTE: To use dynamic batch-size (DeepStream >= 6.1)
--dynamic
NOTE: To use static batch-size (example for batch-size = 4)
--batch 4
NOTE: If you are using the DeepStream 5.1, remove the --dynamic
arg and use opset 12 or lower. The default opset is 11.
--opset 12
Copy the generated ONNX model file to the DeepStream-Yolo
folder.
-
Open the
DeepStream-Yolo
folder and compile the lib -
Set the
CUDA_VER
according to your DeepStream version
export CUDA_VER=XY.Z
-
x86 platform
DeepStream 7.1 = 12.6 DeepStream 7.0 / 6.4 = 12.2 DeepStream 6.3 = 12.1 DeepStream 6.2 = 11.8 DeepStream 6.1.1 = 11.7 DeepStream 6.1 = 11.6 DeepStream 6.0.1 / 6.0 = 11.4 DeepStream 5.1 = 11.1
-
Jetson platform
DeepStream 7.1 = 12.6 DeepStream 7.0 / 6.4 = 12.2 DeepStream 6.3 / 6.2 / 6.1.1 / 6.1 = 11.4 DeepStream 6.0.1 / 6.0 / 5.1 = 10.2
- Make the lib
make -C nvdsinfer_custom_impl_Yolo clean && make -C nvdsinfer_custom_impl_Yolo
Edit the config_infer_primary_yolox.txt
file according to your model (example for YOLOX-s with 80 classes)
[property]
...
onnx-file=yolox_s.pth.onnx
...
num-detected-classes=80
...
parse-bbox-func-name=NvDsInferParseYolo
...
NOTE: If you are using the legacy model, you should edit the config_infer_primary_yolox_legacy.txt
file.
NOTE: The YOLOX and YOLOX legacy resize the input with left/top padding. To get better accuracy, use
[property]
...
maintain-aspect-ratio=1
symmetric-padding=0
...
NOTE: The YOLOX uses BGR color format for the image input. It is important to change the model-color-format
according to the trained values.
[property]
...
model-color-format=1
...
NOTE: The YOLOX legacy uses RGB color format for the image input. It is important to change the model-color-format
according to the trained values.
[property]
...
model-color-format=0
...
NOTE: The YOLOX uses no normalization on the image preprocess. It is important to change the net-scale-factor
according to the trained values.
[property]
...
net-scale-factor=1
...
NOTE: The YOLOX legacy uses normalization on the image preprocess. It is important to change the net-scale-factor
and offsets
according to the trained values.
Default: mean = 0.485, 0.456, 0.406
and std = 0.229, 0.224, 0.225
[property]
...
net-scale-factor=0.0173520735727919486
offsets=123.675;116.28;103.53
...
...
[primary-gie]
...
config-file=config_infer_primary_yolox.txt
NOTE: If you are using the legacy model, you should edit it to config_infer_primary_yolox_legacy.txt
.
deepstream-app -c deepstream_app_config.txt
NOTE: The TensorRT engine file may take a very long time to generate (sometimes more than 10 minutes).
NOTE: For more information about custom models configuration (batch-size
, network-mode
, etc), please check the docs/customModels.md
file.