Skip to content

Latest commit

 

History

History
208 lines (146 loc) · 4.45 KB

YOLOX.md

File metadata and controls

208 lines (146 loc) · 4.45 KB

YOLOX usage

NOTE: You can use the main branch of the YOLOX repo to convert all model versions.

Convert model

1. Download the YOLOX repo and install the requirements

git clone https://github.com/Megvii-BaseDetection/YOLOX.git
cd YOLOX
pip3 install -r requirements.txt
python3 setup.py develop
pip3 install onnx onnxslim onnxruntime

NOTE: It is recommended to use Python virtualenv.

2. Copy conversor

Copy the export_yolox.py file from DeepStream-Yolo/utils directory to the YOLOX folder.

3. Download the model

Download the pth file from YOLOX releases (example for YOLOX-s)

wget https://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0/yolox_s.pth

NOTE: You can use your custom model.

4. Convert model

Generate the ONNX model file (example for YOLOX-s)

python3 export_yolox.py -w yolox_s.pth -c exps/default/yolox_s.py --dynamic

NOTE: To simplify the ONNX model (DeepStream >= 6.0)

--simplify

NOTE: To use dynamic batch-size (DeepStream >= 6.1)

--dynamic

NOTE: To use static batch-size (example for batch-size = 4)

--batch 4

NOTE: If you are using the DeepStream 5.1, remove the --dynamic arg and use opset 12 or lower. The default opset is 11.

--opset 12

5. Copy generated file

Copy the generated ONNX model file to the DeepStream-Yolo folder.

Compile the lib

  1. Open the DeepStream-Yolo folder and compile the lib

  2. Set the CUDA_VER according to your DeepStream version

export CUDA_VER=XY.Z
  • x86 platform

    DeepStream 7.1 = 12.6
    DeepStream 7.0 / 6.4 = 12.2
    DeepStream 6.3 = 12.1
    DeepStream 6.2 = 11.8
    DeepStream 6.1.1 = 11.7
    DeepStream 6.1 = 11.6
    DeepStream 6.0.1 / 6.0 = 11.4
    DeepStream 5.1 = 11.1
    
  • Jetson platform

    DeepStream 7.1 = 12.6
    DeepStream 7.0 / 6.4 = 12.2
    DeepStream 6.3 / 6.2 / 6.1.1 / 6.1 = 11.4
    DeepStream 6.0.1 / 6.0 / 5.1 = 10.2
    
  1. Make the lib
make -C nvdsinfer_custom_impl_Yolo clean && make -C nvdsinfer_custom_impl_Yolo

Edit the config_infer_primary_yolox file

Edit the config_infer_primary_yolox.txt file according to your model (example for YOLOX-s with 80 classes)

[property]
...
onnx-file=yolox_s.pth.onnx
...
num-detected-classes=80
...
parse-bbox-func-name=NvDsInferParseYolo
...

NOTE: If you are using the legacy model, you should edit the config_infer_primary_yolox_legacy.txt file.

NOTE: The YOLOX and YOLOX legacy resize the input with left/top padding. To get better accuracy, use

[property]
...
maintain-aspect-ratio=1
symmetric-padding=0
...

NOTE: The YOLOX uses BGR color format for the image input. It is important to change the model-color-format according to the trained values.

[property]
...
model-color-format=1
...

NOTE: The YOLOX legacy uses RGB color format for the image input. It is important to change the model-color-format according to the trained values.

[property]
...
model-color-format=0
...

NOTE: The YOLOX uses no normalization on the image preprocess. It is important to change the net-scale-factor according to the trained values.

[property]
...
net-scale-factor=1
...

NOTE: The YOLOX legacy uses normalization on the image preprocess. It is important to change the net-scale-factor and offsets according to the trained values.

Default: mean = 0.485, 0.456, 0.406 and std = 0.229, 0.224, 0.225

[property]
...
net-scale-factor=0.0173520735727919486
offsets=123.675;116.28;103.53
...

Edit the deepstream_app_config file

...
[primary-gie]
...
config-file=config_infer_primary_yolox.txt

NOTE: If you are using the legacy model, you should edit it to config_infer_primary_yolox_legacy.txt.

Testing the model

deepstream-app -c deepstream_app_config.txt

NOTE: The TensorRT engine file may take a very long time to generate (sometimes more than 10 minutes).

NOTE: For more information about custom models configuration (batch-size, network-mode, etc), please check the docs/customModels.md file.