-
Notifications
You must be signed in to change notification settings - Fork 0
/
dqn_agent.py
193 lines (159 loc) · 8.13 KB
/
dqn_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import numpy as np
import random
from collections import namedtuple, deque
import torch
import torch.nn.functional as F
import torch.optim as optim
import qnetwork
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
class Agent():
"""Interacts with and learns from the environment."""
@staticmethod
def default_parameter():
return {
'state_size': 37,
'action_size': 4,
'hidden_layers': [64,64],
'drop_p': 0.0,
'seed': 0,
'GAMMA': 0.99,
'LR': 0.0005,
'UPDATE_EVERY': 25,
'BUFFER_SIZE': 100000,
'BATCH_SIZE': 64,
'TAU': 0.001}
def __init__(self, parameter):
"""Initialize an Agent object.
Params
======
parameters
"""
self.state_size = parameter['state_size'] # state_size (int): dimension of each state
self.action_size = parameter['action_size'] # action_size (int): dimension of each action
self.seed = random.seed(parameter['seed']) # random seed
self.GAMMA = parameter['GAMMA'] # discount factor
self.LR = parameter['LR'] # learning rate
self.UPDATE_EVERY = parameter['UPDATE_EVERY'] # how often to update the network
self.BUFFER_SIZE = parameter['BUFFER_SIZE'] # replay buffer size
self.BATCH_SIZE = parameter['BATCH_SIZE'] # minibatch size
self.TAU = parameter['TAU'] # for soft update of target parameters
# Q-Network
self.qnetwork_local = qnetwork.Network(self.state_size, self.action_size, parameter['hidden_layers'], parameter['drop_p']).to(device)
self.qnetwork_target = qnetwork.Network(self.state_size, self.action_size, parameter['hidden_layers'], parameter['drop_p']).to(device)
self.optimizer = optim.Adam(self.qnetwork_local.parameters(), lr=self.LR)
# Replay memory
self.memory = ReplayBuffer(self.action_size, self.BUFFER_SIZE, self.BATCH_SIZE, self.seed)
# Initialize time step (for updating every UPDATE_EVERY steps)
self.t_step = 0
print('\nAgent Device: {}'.format(device))
def step(self, state, action, reward, next_state, done):
# Save experience in replay memory
self.memory.add(state, action, reward, next_state, done)
# Learn every UPDATE_EVERY time steps.
self.t_step = (self.t_step + 1) % self.UPDATE_EVERY
if self.t_step == 0:
# If enough samples are available in memory, get random subset and learn
if len(self.memory) > self.BATCH_SIZE:
experiences = self.memory.sample()
self.learn(experiences, self.GAMMA)
def act(self, state, eps=0.):
"""Returns actions for given state as per current policy.
Params
======
state (array_like): current state
eps (float): epsilon, for epsilon-greedy action selection
"""
state = torch.from_numpy(state).float().unsqueeze(0).to(device)
self.qnetwork_local.eval()
with torch.no_grad():
action_values = self.qnetwork_local(state)
self.qnetwork_local.train()
# Epsilon-greedy action selection
if random.random() > eps:
return np.argmax(action_values.cpu().data.numpy())
else:
return random.choice(np.arange(self.action_size))
def learn(self, experiences, gamma):
"""Update value parameters using given batch of experience tuples.
Params
======
experiences (Tuple[torch.Variable]): tuple of (s, a, r, s', done) tuples
gamma (float): discount factor
"""
states, actions, rewards, next_states, dones = experiences
# Get max predicted Q values (for next states) from target model
Q_targets_next = self.qnetwork_target(next_states).detach().max(1)[0].unsqueeze(1)
# Compute Q targets for current states
Q_targets = rewards + (gamma * Q_targets_next * (1 - dones))
# Get expected Q values from local model
Q_expected = self.qnetwork_local(states).gather(1, actions)
# Compute loss
loss = F.mse_loss(Q_expected, Q_targets)
# Minimize the loss
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
# ------------------- update target network ------------------- #
self.soft_update(self.qnetwork_local, self.qnetwork_target, self.TAU)
def soft_update(self, local_model, target_model, tau):
"""Soft update model parameters.
θ_target = τ*θ_local + (1 - τ)*θ_target
Params
======
local_model (PyTorch model): weights will be copied from
target_model (PyTorch model): weights will be copied to
tau (float): interpolation parameter
"""
for target_param, local_param in zip(target_model.parameters(), local_model.parameters()):
target_param.data.copy_(tau*local_param.data + (1.0-tau)*target_param.data)
def save_checkpoint(self, file):
checkpoint = {'input_size': self.qnetwork_local.input_size,
'output_size': self.qnetwork_local.output_size,
'hidden_layers': [each.out_features for each in self.qnetwork_local.hidden_layers],
'drop_p': self.qnetwork_local.drop_p,
'state_dict': self.qnetwork_local.state_dict()}
torch.save(checkpoint, file)
def load_checkpoint(self, file):
checkpoint = torch.load(file)
self.qnetwork_local = qnetwork.Network(checkpoint['input_size'],
checkpoint['output_size'],
checkpoint['hidden_layers'],
checkpoint['drop_p']).to(device)
self.qnetwork_local.load_state_dict(checkpoint['state_dict'])
self.qnetwork_target = qnetwork.Network(checkpoint['input_size'],
checkpoint['output_size'],
checkpoint['hidden_layers'],
checkpoint['drop_p']).to(device)
self.qnetwork_target.load_state_dict(checkpoint['state_dict'])
class ReplayBuffer:
"""Fixed-size buffer to store experience tuples."""
def __init__(self, action_size, buffer_size, batch_size, seed):
"""Initialize a ReplayBuffer object.
Params
======
action_size (int): dimension of each action
buffer_size (int): maximum size of buffer
batch_size (int): size of each training batch
seed (int): random seed
"""
self.action_size = action_size
self.memory = deque(maxlen=buffer_size)
self.batch_size = batch_size
self.experience = namedtuple("Experience", field_names=["state", "action", "reward", "next_state", "done"])
self.seed = random.seed(seed)
def add(self, state, action, reward, next_state, done):
"""Add a new experience to memory."""
e = self.experience(state, action, reward, next_state, done)
self.memory.append(e)
def sample(self):
"""Randomly sample a batch of experiences from memory."""
experiences = random.sample(self.memory, k=self.batch_size)
states = torch.from_numpy(np.vstack([e.state for e in experiences if e is not None])).float().to(device)
actions = torch.from_numpy(np.vstack([e.action for e in experiences if e is not None])).long().to(device)
rewards = torch.from_numpy(np.vstack([e.reward for e in experiences if e is not None])).float().to(device)
next_states = torch.from_numpy(np.vstack([e.next_state for e in experiences if e is not None])).float().to(device)
dones = torch.from_numpy(np.vstack([e.done for e in experiences if e is not None]).astype(np.uint8)).float().to(device)
return (states, actions, rewards, next_states, dones)
def __len__(self):
"""Return the current size of internal memory."""
return len(self.memory)