-
Notifications
You must be signed in to change notification settings - Fork 12
/
Sets
496 lines (417 loc) · 10.8 KB
/
Sets
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
// C++ implementation of the approach
#include <algorithm>
#include <iostream>
#include <math.h>
#include <stack>
#include <string>
using namespace std;
// Structure to implement a node of a BST
template <typename T>
struct Node {
// The data content of the node
T data;
// Link to the left child
Node* left;
// Link to the right child
Node* right;
public:
// Function to print the inorder
// traversal of the BST
void inorder(Node* r)
{
if (r == NULL) {
return;
}
inorder(r->left);
cout << r->data << " ";
inorder(r->right);
}
/*
Function to check if BST contains a node
with the given data
@param r pointer to the root node
@param d the data to search
@return 1 if the node is present else 0
*/
int containsNode(Node* r, T d)
{
if (r == NULL) {
return 0;
}
int x = r->data == d ? 1 : 0;
return x | containsNode(r->left, d) | containsNode(r->right, d);
}
/*
Function to insert a node with
given data into the BST
@param r pointer to the root node
@param d the data to insert
@return pointer to the root of the resultant BST
*/
Node* insert(Node* r, T d)
{
// Add the node when NULL node is encountered
if (r == NULL) {
Node<T>* tmp = new Node<T>;
tmp->data = d;
tmp->left = tmp->right = NULL;
return tmp;
}
// Traverse the left subtree if data
// is less than the current node
if (d < r->data) {
r->left = insert(r->left, d);
return r;
}
// Traverse the right subtree if data
// is greater than the current node
else if (d > r->data) {
r->right = insert(r->right, d);
return r;
}
else
return r;
}
};
// Class to implement a Set using BST
template <typename T>
class Set {
// Pointer to the root of the
// BST storing the set data
Node<T>* root;
// The number of elements in the set
int size;
public:
// Default constructor
Set()
{
root = NULL;
size = 0;
}
// Copy constructor
Set(const Set& s)
{
root = s.root;
size = s.size;
}
/*
Function to Add an element to the set
@param data the element to add to the set
*/
void add(const T data)
{
if (!root->containsNode(root, data)) {
root = root->insert(root, data);
size++;
}
}
/*
Function to compute the union of two sets
@param s set to find union with
@return the union set
*/
Set unionSet(Set& s)
{
Set<T> res;
// Second set is returned
// if first set is empty
if (root == NULL)
return res;
// First set is returned
// if second set is empty
if (s.root == NULL)
return *this;
// The elements of the first set
// are added to the resultant set
stack<Node<T>*> nodeStack;
nodeStack.push(root);
// Preorder traversal of the BST
while (!nodeStack.empty()) {
Node<T>* node;
node = nodeStack.top();
nodeStack.pop();
// The data is added to the resultant set
res.add(node->data);
if (node->right)
nodeStack.push(node->right);
if (node->left)
nodeStack.push(node->left);
}
// The elements of the second set
// are added to the resultant set
stack<Node<T>*> nodeStack1;
nodeStack1.push(s.root);
while (!nodeStack1.empty()) {
Node<T>* node;
node = nodeStack1.top();
nodeStack1.pop();
res.add(node->data);
if (node->right)
nodeStack1.push(node->right);
if (node->left)
nodeStack1.push(node->left);
}
return res;
}
/**
Computes the intersection of two sets
@param s the set to find intersection with
@return the intersection set
*/
Set intersectionSet(Set& s)
{
Set<T> res;
stack<Node<T>*> nodeStack;
nodeStack.push(root);
while (!nodeStack.empty()) {
Node<T>* node;
node = nodeStack.top();
nodeStack.pop();
if (s.contains(node->data)) {
res.add(node->data);
}
if (node->right)
nodeStack.push(node->right);
if (node->left)
nodeStack.push(node->left);
}
return res;
}
/*
Function to compute the complement of the set
@param U the universal set
@return the complement set
*/
Set complementSet(Set& U)
{
return (U - *this);
}
/*
Function to compute the difference of two sets
@param s the set to be subtracted
@return the difference set
*/
Set operator-(Set& s)
{
Set<T> res;
stack<Node<T>*> nodeStack;
nodeStack.push(this->root);
while (!nodeStack.empty()) {
Node<T>* node;
node = nodeStack.top();
nodeStack.pop();
if (!s.contains(node->data)) {
res.add(node->data);
}
if (node->right)
nodeStack.push(node->right);
if (node->left)
nodeStack.push(node->left);
}
return res;
}
/*
Function that checks equality of two sets
@param s set to check equality with
@return boolean value denoting result of check
*/
bool operator==(Set& s)
{
if (s.getSize() != size) {
return false;
}
stack<Node<T>*> nodeStack;
nodeStack.push(this->root);
while (!nodeStack.empty()) {
Node<T>* node;
node = nodeStack.top();
nodeStack.pop();
if (!s.contains(node->data)) {
return false;
}
if (node->right)
nodeStack.push(node->right);
if (node->left)
nodeStack.push(node->left);
}
return true;
}
/*
Function to print the cartesian product of two sets
@param s the set to find product with
*/
void displayProduct(Set& s)
{
int i, j, n2 = s.getSize();
T* A = toArray();
T* B = s.toArray();
i = 0;
cout << "{ ";
for (i = 0; i < size; i++) {
for (j = 0; j < n2; j++) {
cout << "{ " << A[i] << " " << B[j] << " } ";
}
}
cout << "}" << endl;
}
// Function to print power set of the set
void displayPowerSet()
{
int n = pow(2, size);
T* A = toArray();
int i;
while (n-- > 0) {
cout << "{ ";
for (int i = 0; i < size; i++) {
if ((n & (1 << i)) == 0) {
cout << A[i] << " ";
}
}
cout << "}" << endl;
}
}
/*
Function to convert the set into an array
@return array of set elements
*/
T* toArray()
{
T* A = new T[size];
int i = 0;
stack<Node<T>*> nodeStack;
nodeStack.push(this->root);
while (!nodeStack.empty()) {
Node<T>* node;
node = nodeStack.top();
nodeStack.pop();
A[i++] = node->data;
if (node->right)
nodeStack.push(node->right);
if (node->left)
nodeStack.push(node->left);
}
return A;
}
/*
Function to check whether the set contains an element
@param data the element to search
@return relut of check
*/
bool contains(T data)
{
return root->containsNode(root, data) ? true : false;
}
// Function to print the contents of the set
void displaySet()
{
cout << "{ ";
root->inorder(root);
cout << "}" << endl;
}
/*
Function to return the current size of the Set
@return size of set
*/
int getSize()
{
return size;
}
};
// Driver code
int main()
{
// Create Set A
Set<int> A;
// Add elements to Set A
A.add(1);
A.add(2);
A.add(3);
A.add(2);
// Display the contents of Set A
cout << "A = ";
A.displaySet();
cout << "P(A) = " << endl;
A.displayPowerSet();
// Check if Set A contains some elements
cout << "A " << (A.contains(3) ? "contains"
: "does not contain")
<< " 3" << endl;
cout << "A " << (A.contains(4) ? "contains"
: "does not contain")
<< " 4" << endl;
cout << endl;
// Create Set B
Set<int> B;
// Insert elements to Set B
B.add(1);
B.add(2);
B.add(4);
// Display the contents of Set B
cout << "B = ";
B.displaySet();
cout << "P(B) = " << endl;
B.displayPowerSet();
cout << endl;
// Create Set C
Set<int> C;
C.add(1);
C.add(2);
C.add(4);
// Display the contents of Set C
cout << "C = ";
C.displaySet();
cout << endl;
// Set F contains the difference
// of the Sets A and B
Set<int> F = A - B;
cout << "A - B = ";
F.displaySet();
cout << endl;
// Set D contains the union
// of the Sets A and B
Set<int> D = A.unionSet(B);
cout << "A union B = ";
D.displaySet();
cout << endl;
// Set E contains the intersection
// of the Sets A and B
Set<int> E = A.intersectionSet(B);
cout << "A intersection B = ";
E.displaySet();
cout << endl;
// Display the product
cout << "A x B = ";
A.displayProduct(B);
cout << endl;
// Equality tests
cout << "Equality of Sets:" << endl;
cout << "A "
<< ((A == B) ? "" : "!") << "= B"
<< endl;
cout << "B "
<< ((B == C) ? "" : "!") << "= C"
<< endl;
cout << "A "
<< ((A == C) ? "" : "!") << "= C"
<< endl;
cout << endl;
Set<int> U;
U.add(1);
U.add(2);
U.add(3);
U.add(4);
U.add(5);
U.add(6);
U.add(7);
// Complements of the respective Sets
Set<int> A1 = A.complementSet(U);
Set<int> B1 = B.complementSet(U);
Set<int> C1 = C.complementSet(U);
cout << "A' = ";
A1.displaySet();
cout << "B' = ";
B1.displaySet();
cout << "C' = ";
C1.displaySet();
return 0;
}