forked from nv-tlabs/LION
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_dist.py
253 lines (229 loc) · 10.8 KB
/
train_dist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
# ---------------------------------------------------------------
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited.
# ---------------------------------------------------------------
import importlib
import argparse
from loguru import logger
from comet_ml import Experiment
import torch
import numpy as np
import os
import sys
import torch.distributed as dist
from torch.multiprocessing import Process
from default_config import cfg as config
from utils import exp_helper, io_helper
from utils import utils
@logger.catch(onerror=lambda _: sys.exit(1), reraise=False)
def main(args, config):
# -- trainer -- #
logger.info('use trainer: {}', config.trainer.type)
trainer_lib = importlib.import_module(config.trainer.type)
Trainer = trainer_lib.Trainer
if config.set_detect_anomaly:
# attention: this makes thing slow
torch.autograd.set_detect_anomaly(True)
logger.info(
'\n\n' + '!'*30 + '\nWARNING: ths set_detect_anomaly is turned on, it can slow down the training! \n' + '!'*30)
# -- command init -- #
comet_key = config.comet_key
_, writer = utils.common_init(args.global_rank,
config.trainer.seed, config.save_dir, comet_key)
trainer = Trainer(config, args)
writer.add_hparams(config.to_dict(), vars(args))
nparam = utils.count_parameters_in_M(trainer.model)
logger.info('param size = %fM ' % nparam)
writer.log_other('nparam', nparam)
if args.global_rank == 0:
trainer.set_writer(writer)
writer.set_model_graph('{}'.format(trainer.model), overwrite=True)
if len(config.bash_name) > 0 and os.path.exists(config.bash_name):
writer.log_asset(config.bash_name)
if len(config.bash_name) > 0 and os.path.exists(os.path.join(config.save_dir, config.bash_name.split('/')[-1])):
writer.log_asset(os.path.join(
config.save_dir, config.bash_name.split('/')[-1]))
ckpt_dir = os.path.join(config.save_dir, 'checkpoints')
snapshot_file = os.path.join(config.save_dir, 'checkpoints', 'snapshot')
# -- check if prev saved ckpt exist -- #
if os.path.exists(ckpt_dir) and os.path.exists(snapshot_file):
logger.info(
'[Detect saved snapshot at the checkpoint dir] resume from preemption!!! ')
args.resume = True
args.pretrained = os.path.join(
config.save_dir, 'checkpoints', 'snapshot')
else:
logger.info('not find any checkpoint: {}, (exist={}), or snapshot {}, (exist={})',
ckpt_dir, os.path.exists(ckpt_dir), snapshot_file, os.path.exists(snapshot_file))
# -- prepare -- #
if args.resume or args.eval_generation:
if args.pretrained is not None:
trainer.start_epoch = trainer.resume(
args.pretrained, eval_generation=args.eval_generation)
else:
raise NotImplementedError
elif args.pretrained is not None:
logger.info('Resuming training from {}; if you dont want resume training, edit the cmt to change the exp name',
args.pretrained)
trainer.resume(args.pretrained)
if not args.eval_generation:
trainer.train_epochs()
else:
logger.info('[skip_sample]={}', args.skip_sample)
save_file = None
if not args.skip_nll:
trainer.eval_nll(trainer.step, ntest=args.ntest, save_file=True)
logger.info('save as : {}', save_file)
# vis sampled output
if not args.skip_sample:
trainer.vis_sample(num_vis=8, writer=trainer.writer,
step=trainer.step, include_pred_x0=False,
save_file=save_file)
trainer.eval_sample(trainer.step)
logger.info('done')
# make all nodes wait for rank 0 to finish saving the files
# if args.distributed:
# dist.barrier()
def get_args():
parser = argparse.ArgumentParser('encoder decoder examiner')
# experimental results
parser.add_argument('--exp_root', type=str, default='../exp',
help='location of the results')
# parser.add_argument('--save', type=str, default='exp',
# help='id used for storing intermediate results')
# parser.add_argument('--recont_with_local_prior', type=bool, default=False,
# help='eval nll with local prior sampled from normal distribution')
parser.add_argument('--skip_sample', type=int, default=0,
help='only eval nll, no sampling')
parser.add_argument('--skip_nll', type=int, default=0,
help='skip eval nll ')
# data
parser.add_argument('--ntest', type=str, default=None,
help='number of samples in eval_nll, if None, eval the whole val set')
parser.add_argument('--dataset', type=str, default='cifar10',
choices=['cifar10', 'celeba_64', 'celeba_256',
'imagenet_32', 'ffhq', 'lsun_bedroom_128'],
help='which dataset to use')
parser.add_argument('--data', type=str, default='/tmp/nvae-diff/data',
help='location of the data corpus')
# DDP.
parser.add_argument('--autocast_train', action='store_true', default=True,
help='This flag enables FP16 in training.')
parser.add_argument('--autocast_eval', action='store_true', default=True,
help='This flag enables FP16 in evaluation.')
parser.add_argument('--num_proc_node', type=int, default=1,
help='The number of nodes in multi node env.')
parser.add_argument('--node_rank', type=int, default=0,
help='The index of node.')
parser.add_argument('--local_rank', type=int, default=0,
help='rank of process in the node')
parser.add_argument('--global_rank', type=int, default=0,
help='rank of process among all the processes')
parser.add_argument('--num_process_per_node', type=int, default=1,
help='number of gpus')
parser.add_argument('--master_address', type=str, default='127.0.0.1',
help='address for master')
parser.add_argument('--seed', type=int, default=1,
help='seed used for initialization')
parser.add_argument('--config', type=str,
help='The configuration file.', default='none')
parser.add_argument("opt",
help="Modify config options using the command-line",
default=None,
nargs=argparse.REMAINDER)
# Resume:
parser.add_argument('--resume', default=False, action='store_true')
parser.add_argument('--eval_generation',
default=False, action='store_true')
parser.add_argument('--pretrained',
default=None,
type=str,
help="Pretrained cehckpoint")
args = parser.parse_args()
# update config
if args.eval_generation or args.resume:
logger.info('[pretrained]: {}', args.pretrained)
args.config = os.path.dirname(args.pretrained) + '/../cfg.yml'
config.merge_from_file(args.config)
elif args.config != 'none':
logger.info('load config: {}', args.config)
cur_exp_name = config.exp_name
cur_hash = config.hash
config.merge_from_file(args.config)
config.exp_name = cur_exp_name # not following the exp name here
config.hash = cur_hash # not following the exp name here
config.merge_from_list(args.opt)
# Create log_name
EXP_ROOT = args.exp_root # os.environ.get('EXP_ROOT', '../exp/')
if config.exp_name == '' or config.exp_name == 'none':
config.hash = io_helper.hash_str('%s' % config) + 'h'
cfg_file_name = exp_helper.get_expname(config)
else:
cfg_file_name = config.exp_name
# Currently save dir and log_dir are the same
if args.eval_generation:
config.save_dir = config.log_dir = config.log_name = os.path.dirname(
args.config)
if config.trainer.type == 'ddim':
tag = 'eval_ddim'
else:
tag = 'eval'
cfg_file_name += f'/{tag}/'
config.log_name += f'/{tag}/'
config.save_dir += f'/{tag}/'
config.log_dir += f'/{tag}/'
else:
config.log_name = os.path.join(EXP_ROOT, cfg_file_name)
config.save_dir = os.path.join(EXP_ROOT, cfg_file_name)
config.log_dir = os.path.join(EXP_ROOT, cfg_file_name)
os.makedirs(config.log_dir, exist_ok=True)
# save config and log
if args.global_rank == 0 and not args.eval_generation:
logger.add(config.log_dir + '/train.log')
logger.info('EXP_ROOT: {} + exp name: {}, save dir: {}', EXP_ROOT,
cfg_file_name, config.save_dir)
saved_cfg = os.path.join(config.log_dir, 'cfg.yml')
with open(saved_cfg, 'w') as file:
file.write(config.dump())
logger.info('save config at {}', saved_cfg)
elif args.eval_generation:
logger.add(config.log_dir + '/eval_gen.log')
logger.info('log dir: {}', config.log_dir)
return args, config
if __name__ == '__main__':
args, config = get_args()
args.ntest = int(args.ntest) if args.ntest is not None else None
size = args.num_process_per_node
if size > 1:
args.distributed = True
processes = []
for rank in range(size):
logger.info('In Rank={}', rank)
args.local_rank = rank
global_rank = rank + args.node_rank * args.num_process_per_node
global_size = args.num_proc_node * args.num_process_per_node
args.global_size = global_size
args.global_rank = global_rank
logger.info('Node rank %d, local proc %d, global proc %d' %
(args.node_rank, rank, global_rank))
p = Process(target=utils.init_processes,
args=(global_rank, global_size, main, args, config))
p.start()
processes.append(p)
for p in processes:
logger.info('join {}', args.local_rank)
p.join()
else:
# for debugging
args.distributed = False
args.global_size = 1
utils.init_processes(0, size, main, args, config)
logger.info('should end now')
# if args.distributed:
# logger.info('destroy_process_group')
# dist.destroy_process_group()