Skip to content

An R package to create crop distribution maps for country-level applications using downscaling approaches.

License

Notifications You must be signed in to change notification settings

michielvandijk/mapspamc

Repository files navigation

mapspamc

Lifecycle: experimental Project Status: Active – The project has reached a stable, usable state and is being actively developed.

The aim of the mapspamc R package is to facilitate the creation of country level crop distribution maps. The model builds on the global version of the Spatial Production Allocation model (SPAM) (You and Wood 2006; You, Wood, and Wood-Sichra 2009; You et al. 2014; Yu et al. 2020), which uses a cross-entropy optimization approach to ‘pixelate’ national and subnational crop statistics on a spatial grid at a resolution of 5 arc minutes (~ 10 x 10 km). mapspamc provides the necessary infrastructure to run SPAM at the country level and makes it possible to incorporate national sources of information and potentially create maps at a higher resolution of 30 arc seconds (~ 1 x 1 km) (Dijk et al. 2022). More information can be found on the package website.

Installation

To install mapspamc:

install.packages("remotes")
remotes::install_github("michielvandijk/mapspamc")

References

Dijk, Michiel van, Ulrike Wood-Sichra, Yating Ru, Amanda Palazzo, Petr Havlik, and Liangzhi You. 2022. “Generating multi-period crop distribution maps for Southern Africa using a data fusion approach.”

You, Liangzhi, and Stanley Wood. 2006. “An entropy approach to spatial disaggregation of agricultural production.” Agricultural Systems 90 (1): 329–47. https://doi.org/10.1016/j.agsy.2006.01.008.

You, Liangzhi, Stanley Wood, and Ulrike Wood-Sichra. 2009. “Generating plausible crop distribution maps for Sub-Saharan Africa using a spatially disaggregated data fusion and optimization approach.” Agricultural Systems 99 (2): 126–40. https://doi.org/10.1016/j.agsy.2008.11.003.

You, Liangzhi, Stanley Wood, Ulrike Wood-Sichra, and Wenbin Wu. 2014. “Generating global crop distribution maps: From census to grid.” Agricultural Systems 127: 53–60. https://doi.org/10.1016/j.agsy.2014.01.002.

Yu, Qiangyi, Liangzhi You, Ulrike Wood-Sichra, Yating Ru, Alison K. B. Joglekar, Steffen Fritz, Wei Xiong, Miao Lu, Wenbin Wu, and Peng Yang. 2020. “A cultivated planet in 2010 – Part 2: The global gridded agricultural-production maps.” Earth System Science Data 12 (4): 3545–72. https://doi.org/10.5194/essd-12-3545-2020.

About

An R package to create crop distribution maps for country-level applications using downscaling approaches.

Resources

License

Stars

Watchers

Forks

Packages

No packages published