You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
The segmental_snr_mixer function in audiolib.py is wrong.
Because the normalization is applied, the noisescalar calculation is
noisescalar = 1 / (10**(snr/20))
not be
noisescalar = rmsclean / (10**(snr/20)) / (rmsnoise+EPS)
Based on the test file
import numpy as np
import audiolib
params = {'cfg':1, 'target_level_lower':-35,'target_level_upper':-25}
temp = [0.1,0.2,0.3,0.4,0.5]
for abs_a in range(len(temp)):
for abs_b in range(len(temp)):
base_a = np.random.binomial(1,temp[abs_a],size=(5000,1))
base_b = np.random.binomial(1,temp[abs_b],size=(5000,1))
print(temp[abs_a], temp[abs_b], audiolib.segmental_snr_mixer(params,base_a,base_b,snr=5))
and add the following code after line 169 in audiolib.py
rmsclean1, rmsnoise2 = active_rms(clean=clean, noise=noisenewlevel)
snr_test = 20*np.log10(rmsclean1/rmsnoise2)
return snr_test, rmsclean, rmsnoise
The segmental_snr_mixer function in audiolib.py is wrong.
Because the normalization is applied, the noisescalar calculation is
noisescalar = 1 / (10**(snr/20))
not be
noisescalar = rmsclean / (10**(snr/20)) / (rmsnoise+EPS)
Based on the test file
import numpy as np
import audiolib
params = {'cfg':1, 'target_level_lower':-35,'target_level_upper':-25}
temp = [0.1,0.2,0.3,0.4,0.5]
for abs_a in range(len(temp)):
for abs_b in range(len(temp)):
base_a = np.random.binomial(1,temp[abs_a],size=(5000,1))
base_b = np.random.binomial(1,temp[abs_b],size=(5000,1))
print(temp[abs_a], temp[abs_b], audiolib.segmental_snr_mixer(params,base_a,base_b,snr=5))
and add the following code after line 169 in audiolib.py
rmsclean1, rmsnoise2 = active_rms(clean=clean, noise=noisenewlevel)
snr_test = 20*np.log10(rmsclean1/rmsnoise2)
return snr_test, rmsclean, rmsnoise
we have
0.1 0.1 (4.809261190526833, 0.3199999999999999, 0.31304951684997046)
0.1 0.2 (8.398437767900433, 0.3085449724108302, 0.45628938186199325)
0.1 0.3 (9.541254719329668, 0.32557641192199405, 0.5491812087098392)
0.1 0.4 (11.254207673313344, 0.30822070014844877, 0.6332456079595024)
0.1 0.5 (11.975890986196333, 0.3174901573277508, 0.7088018058667739)
0.2 0.1 (1.8278324324274429, 0.4436214602563766, 0.307896086366813)
0.2 0.2 (5.030355204691368, 0.44676615807377346, 0.44833023542919775)
0.2 0.3 (6.760912590556815, 0.4498888751680796, 0.5509990925582363)
0.2 0.4 (8.027724031442382, 0.4460941604639091, 0.6321392251711642)
0.2 0.5 (8.922584416928597, 0.45409250158970904, 0.7133021800050802)
0.3 0.1 (0.009673346077310881, 0.5594640292279744, 0.3149603149604724)
0.3 0.2 (3.2262700519281093, 0.5526300751859239, 0.4505552130427523)
0.3 0.3 (5.140245659899135, 0.5464430436925699, 0.5553377350765928)
0.3 0.4 (6.272472841406196, 0.5479051012721089, 0.6343500610861481)
0.3 0.5 (7.247686760565433, 0.5499090833947007, 0.7123201527403249)
0.4 0.1 (-1.350831784195107, 0.6315061361538776, 0.3039736830714132)
0.4 0.2 (2.0700880682248917, 0.6378087487640788, 0.4551922670696416)
0.4 0.3 (3.875478643051899, 0.6288083968904994, 0.5524490926773252)
0.4 0.4 (4.854129294663155, 0.6463745044476923, 0.6356099432828279)
0.4 0.5 (5.987176033927486, 0.634665266104897, 0.711055553385247)
0.5 0.1 (-1.9690929118423788, 0.7103520254071215, 0.31843366656181304)
0.5 0.2 (1.0023430870343295, 0.707530918052349, 0.44654227123532203)
0.5 0.3 (2.6995947405835983, 0.7142828571371427, 0.5480875842417887)
0.5 0.4 (4.139592830567267, 0.7037044834303671, 0.6373382147651275)
0.5 0.5 (4.885728516741401, 0.707530918052349, 0.6982836100038435)
The text was updated successfully, but these errors were encountered: