diff --git a/_config.yml b/_config.yml index 9f370bb..c2712b1 100644 --- a/_config.yml +++ b/_config.yml @@ -29,7 +29,7 @@ heading_anchors: true permalink: pretty aux_links: Canvas: - - 'https://canvas.harvard.edu/courses/117878' + - 'https://canvas.harvard.edu/courses/134015' Harvard DBMI: - 'https://dbmi.hms.harvard.edu' Zitnik Lab: diff --git a/_modules/week-01.md b/_modules/week-01.md index 783d80f..74239ca 100644 --- a/_modules/week-01.md +++ b/_modules/week-01.md @@ -4,10 +4,10 @@ title: Week 1 Course overview and introduction to biomedical AI -Jan 23 +Jan 25 : **Lecture**{: .label .label-purple }[What makes biomedical problems unique](/BMI702/lectures/week01) : [Slides](/BMI702/assets/zitnik-BMI702-L1.pdf), [Reading List](/BMI702/lectures/week01) -Jan 24 -: **Quiz**{: .label .label-green }[Week 2 pre-class quiz](#) (due Jan 29) - : [Canvas](https://canvas.harvard.edu/courses/117878) +Jan 26 +: **Quiz**{: .label .label-green }[Week 2 pre-class quiz](#) (due Feb 1) + : [Canvas](https://canvas.harvard.edu/courses/134015) diff --git a/_modules/week-02.md b/_modules/week-02.md index 19276ce..7255509 100644 --- a/_modules/week-02.md +++ b/_modules/week-02.md @@ -4,10 +4,10 @@ title: Week 2 Clinical research using EHR data, subtype discovery, disease diagnosis and prognosis prediction -Jan 30 +Feb 1 : **Module 1**{: .label .label-blue }**Lecture**{: .label .label-purple }[Clinical AI Part I](/BMI702/lectures/module1/week02) - : [Slides](/BMI702/assets/zitnik-BMI702-L2.pdf), [Reading List](/BMI702/lectures/module1/week02) + : [Slides](#), [Reading List](/BMI702/lectures/module1/week02) -Jan 31 -: **Quiz**{: .label .label-green }[Week 3 pre-class quiz](#) (due Feb 5) - : [Canvas](https://canvas.harvard.edu/courses/117878) +Feb 2 +: **Quiz**{: .label .label-green }[Week 3 pre-class quiz](#) (due Feb 8) + : [Canvas](https://canvas.harvard.edu/courses/134015) diff --git a/_modules/week-03.md b/_modules/week-03.md index 2c15be6..5823e10 100644 --- a/_modules/week-03.md +++ b/_modules/week-03.md @@ -2,12 +2,12 @@ title: Week 3 --- -Multi-institutional EHR systems, transfer learning, federated learning, clinical workflows +Multi-institutional EHR, transfer learning, federated learning -Feb 6 +Feb 8 : **Module 1**{: .label .label-blue }**Lecture**{: .label .label-purple }[Clinical AI Part II](/BMI702/lectures/module1/week03) - : [Slides](/BMI702/assets/zitnik-BMI702-L3.pdf), [Reading List](/BMI702/lectures/module1/week03) + : [Slides](#), [Reading List](/BMI702/lectures/module1/week03) -Feb 7 -: **Quiz**{: .label .label-green }[Week 4 pre-class quiz](#) (due Feb 12) - : [Canvas](https://canvas.harvard.edu/courses/117878) +Feb 9 +: **Quiz**{: .label .label-green }[Week 4 pre-class quiz](#) (due Feb 15) + : [Canvas](https://canvas.harvard.edu/courses/134015) diff --git a/_modules/week-04.md b/_modules/week-04.md index 07dbf24..5f2682a 100644 --- a/_modules/week-04.md +++ b/_modules/week-04.md @@ -2,12 +2,12 @@ title: Week 4 --- -Interpretability and explainability in biomedical AI +Interpretability and explainability, bias and distribution shifts -Feb 13 -: **Module 2**{: .label .label-blue }**Lecture**{: .label .label-purple }[Trustworthy AI Part I](/BMI702/lectures/module2/week04) - : [Slides](/BMI702/assets/zitnik-BMI702-L4.pdf), [Reading List](/BMI702/lectures/module2/week04) +Feb 15 +: **Module 2**{: .label .label-blue }**Lecture**{: .label .label-purple }[Trustworthy & Efficient AI Part I](/BMI702/lectures/module2/week04) + : [Slides](#), [Reading List](/BMI702/lectures/module2/week04) -Feb 13 -: **Quiz**{: .label .label-green }[Week 5 pre-class quiz](#) (due Feb 26) - : [Canvas](https://canvas.harvard.edu/courses/117878) +Feb 16 +: **Quiz**{: .label .label-green }[Week 5 pre-class quiz](#) (due Feb 22) + : [Canvas](https://canvas.harvard.edu/courses/134015) diff --git a/_modules/week-05.md b/_modules/week-05.md index 675fe1b..bccb9ea 100644 --- a/_modules/week-05.md +++ b/_modules/week-05.md @@ -2,16 +2,16 @@ title: Week 5 --- -Bias and fairness in biomedical AI +Few-shot learning, scaling laws, generalization and robustness -Feb 27 -: **Module 2**{: .label .label-blue }**Lecture**{: .label .label-purple }[Trustworthy AI Part II](/BMI702/lectures/module2/week05) - : [Slides](/BMI702/assets/zitnik-BMI702-L5.pdf), [Reading List](/BMI702/lectures/module2/week05) +Feb 22 +: **Module 2**{: .label .label-blue }**Lecture**{: .label .label-purple }[Trustworthy & Efficient AI Part II](/BMI702/lectures/module2/week05) + : [Slides](#), [Reading List](/BMI702/lectures/module2/week05) -Feb 28 -: **Quiz**{: .label .label-green }[Week 6 pre-class quiz](#) (due Mar 5) - : [Canvas](https://canvas.harvard.edu/courses/117878) +Feb 23 +: **Quiz**{: .label .label-green }[Week 6 pre-class quiz](#) (due Feb 29) + : [Canvas](https://canvas.harvard.edu/courses/134015) -Mar 1 -: **PSet released**{: .label .label-yellow }[PSet 1: Bias, explainability, and fairness](#) - : [Canvas](https://canvas.harvard.edu/courses/117878) \ No newline at end of file +Feb 23 +: **PSet released**{: .label .label-yellow }[PSet 1: Bias, trustworthiness, and fairness](#) + : [Canvas](https://canvas.harvard.edu/courses/134015) \ No newline at end of file diff --git a/_modules/week-06.md b/_modules/week-06.md index 006f0e4..9ec5c1d 100644 --- a/_modules/week-06.md +++ b/_modules/week-06.md @@ -4,10 +4,10 @@ title: Week 6 Foundations of geometric deep learning, graph representation learning, link prediction, node classification, graph clustering, graph classification, semi-supervised learning, label propagation, network medicine, disease modules and endotypes -Mar 6 +Feb 29 : **Module 3**{: .label .label-blue }**Lecture**{: .label .label-purple }[Biomedical graph learning Part I](/BMI702/lectures/module3/week06) - : [Slides](/BMI702/assets/zitnik-BMI702-L6.pdf), [Reading List](/BMI702/lectures/module3/week06) + : [Slides](#), [Reading List](/BMI702/lectures/module3/week06) -Mar 7 -: **Quiz**{: .label .label-green }[Week 7 pre-class quiz](#) (due Mar 12) - : [Canvas](https://canvas.harvard.edu/courses/117878) +Mar 1 +: **Quiz**{: .label .label-green }[Week 7 pre-class quiz](#) (due Mar 7) + : [Canvas](https://canvas.harvard.edu/courses/134015) diff --git a/_modules/week-07.md b/_modules/week-07.md index 8184843..c761d0c 100644 --- a/_modules/week-07.md +++ b/_modules/week-07.md @@ -4,14 +4,14 @@ title: Week 7 Machine learning with heterogeneous graphs, multimodal learning, graph neural networks, knowledge graph embeddings, reasoning over knowledge graphs -Mar 20 +Mar 7 : **Module 3**{: .label .label-blue }**Lecture**{: .label .label-purple }[Biomedical graph learning Part II](/BMI702/lectures/module3/week07) - : [Slides - Part 1](/BMI702/assets/zitnik-BMI702-L7-Part-1.pdf), [Slides - Part 2](/BMI702/assets/li-BMI702-L7-Part-2.pdf), [Reading List](/BMI702/lectures/module3/week07) + : [Slides - Part 1](#), [Slides - Part 2](#), [Reading List](/BMI702/lectures/module3/week07) -Mar 21 -: **Quiz**{: .label .label-green }[Week 8 pre-class quiz](#) (due Mar 26) - : [Canvas](https://canvas.harvard.edu/courses/117878) +Mar 8 +: **Quiz**{: .label .label-green }[Week 8 pre-class quiz](#) (due Mar 21) + : [Canvas](https://canvas.harvard.edu/courses/134015) -Mar 22 -: **PSet due**{: .label .label-yellow }[PSet 1: Bias, explainability, and fairness](#) - : [Canvas](https://canvas.harvard.edu/courses/117878) \ No newline at end of file +Mar 8 +: **PSet due**{: .label .label-yellow }[PSet 1: Bias, trustworthiness, and fairness](#) + : [Canvas](https://canvas.harvard.edu/courses/134015) \ No newline at end of file diff --git a/_modules/week-08.md b/_modules/week-08.md index efa56cd..54016aa 100644 --- a/_modules/week-08.md +++ b/_modules/week-08.md @@ -4,14 +4,14 @@ title: Week 8 Foundations of natural language processing and understanding -Mar 27 +Mar 21 : **Module 4**{: .label .label-blue }**Lecture**{: .label .label-purple }[Medical language modeling Part I](/BMI702/lectures/module4/week08) - : [Slides](/BMI702/assets/li-BMI702-L8.pdf), [Reading List](/BMI702/lectures/module4/week08) + : [Slides](#), [Reading List](/BMI702/lectures/module4/week08) -Mar 28 -: **Quiz**{: .label .label-green }[Week 9 pre-class quiz](#) (due Apr 2) - : [Canvas](https://canvas.harvard.edu/courses/117878) +Mar 22 +: **Quiz**{: .label .label-green }[Week 9 pre-class quiz](#) (due Mar 28) + : [Canvas](https://canvas.harvard.edu/courses/134015) -Mar 29 -: **PSet released**{: .label .label-yellow }[PSet 2: Biomedical networks and graph embeddings](#) - : [Canvas](https://canvas.harvard.edu/courses/117878) +Mar 22 +: **PSet released**{: .label .label-yellow }[PSet 2: Knowledge graphs and geometric deep learning](#) + : [Canvas](https://canvas.harvard.edu/courses/134015) diff --git a/_modules/week-09.md b/_modules/week-09.md index 475499d..fd3f769 100644 --- a/_modules/week-09.md +++ b/_modules/week-09.md @@ -4,10 +4,10 @@ title: Week 9 Clinical trial site identification, patient trial matching, clinical trial recruitment -Apr 3 +Mar 28 : **Module 4**{: .label .label-blue }**Lecture**{: .label .label-purple }[Medical language modeling Part II](/BMI702/lectures/module4/week09) - : [Slides](/BMI702/assets/zitnik-BMI702-L9.pdf), [Reading List](/BMI702/lectures/module4/week09) + : [Slides](#), [Reading List](/BMI702/lectures/module4/week09) -Apr 4 -: **Quiz**{: .label .label-green }[Week 10 pre-class quiz](#) (due Apr 9) - : [Canvas](https://canvas.harvard.edu/courses/117878) +Apr 29 +: **Quiz**{: .label .label-green }[Week 10 pre-class quiz](#) (due Apr 4) + : [Canvas](https://canvas.harvard.edu/courses/134015) diff --git a/_modules/week-10.md b/_modules/week-10.md index 3d898bb..8ae9f72 100644 --- a/_modules/week-10.md +++ b/_modules/week-10.md @@ -4,14 +4,14 @@ title: Week 10 Foundations of biomedical imaging, self-supervised learning, analysis of radiology images -Apr 10 +Apr 4 : **Module 5**{: .label .label-blue }**Lecture**{: .label .label-purple }[Biomedical imaging Part I](/BMI702/lectures/module5/week10) - : [Slides](/BMI702/assets/rajpurkar-BMI702-L10.pdf), [Reading List](/BMI702/lectures/module5/week10) + : [Slides](#), [Reading List](/BMI702/lectures/module5/week10) -Apr 11 -: **Quiz**{: .label .label-green }[Week 11 pre-class quiz](#) (due Apr 16) - : [Canvas](https://canvas.harvard.edu/courses/117878) +Apr 5 +: **Quiz**{: .label .label-green }[Week 11 pre-class quiz](#) (due Apr 11) + : [Canvas](https://canvas.harvard.edu/courses/134015) -Apr 12 -: **PSet due**{: .label .label-yellow }[PSet 2: Biomedical networks and graph embeddings](#) - : [Canvas](https://canvas.harvard.edu/courses/117878) \ No newline at end of file +Apr 5 +: **PSet due**{: .label .label-yellow }[PSet 2: Knowledge graphs and geometric deep learning](#) + : [Canvas](https://canvas.harvard.edu/courses/134015) \ No newline at end of file diff --git a/_modules/week-11.md b/_modules/week-11.md index 3f71ffb..68f6609 100644 --- a/_modules/week-11.md +++ b/_modules/week-11.md @@ -4,14 +4,14 @@ title: Week 11 Multimodal learning, analysis of histopathology slides, quantitative pathology in cancer diagnosis and prognosis -Apr 17 +Apr 11 : **Module 5**{: .label .label-blue }**Lecture**{: .label .label-purple }[Biomedical imaging Part II](/BMI702/lectures/module5/week11) - : [Slides](https://drive.google.com/file/d/1w6ED8dOF8DKFgFdFbmwPNYZRT9z2HwCY/view?usp=share_link), [Reading List](/BMI702/lectures/module5/week11) + : [Slides](#), [Reading List](/BMI702/lectures/module5/week11) -Apr 18 -: **Quiz**{: .label .label-green }[Week 12 pre-class quiz](#) (due Apr 23) - : [Canvas](https://canvas.harvard.edu/courses/117878) +Apr 12 +: **Quiz**{: .label .label-green }[Week 12 pre-class quiz](#) (due Apr 18) + : [Canvas](https://canvas.harvard.edu/courses/134015) -Apr 19 +Apr 12 : **PSet released**{: .label .label-yellow }[PSet 3: Biomedical imaging methods and applications](#) - : [Canvas](https://canvas.harvard.edu/courses/117878) \ No newline at end of file + : [Canvas](https://canvas.harvard.edu/courses/134015) \ No newline at end of file diff --git a/_modules/week-12.md b/_modules/week-12.md index b123068..d560f03 100644 --- a/_modules/week-12.md +++ b/_modules/week-12.md @@ -2,12 +2,12 @@ title: Week 12 --- -Overview of drug discovery and development, AI-guided drug design, small-molecule generation, molecule optimization, identification and characterization of therapeutic targets, high-throughput chemical and genetic perturbations +AI-guided drug design, small-molecule generation, molecule optimization, identification and characterization of therapeutic targets, design of chemical and genetic perturbations -Apr 24 -: **Module 6**{: .label .label-blue }**Lecture**{: .label .label-purple }[Therapeutic science and drug discovery Part I](/BMI702/lectures/module6/week12) - : [Slides](/BMI702/assets/zitnik-BMI702-L12.pdf), [Reading List](/BMI702/lectures/module6/week12) +Apr 18 +: **Module 6**{: .label .label-blue }**Lecture**{: .label .label-purple }[Generative AI Part I](/BMI702/lectures/module6/week12) + : [Slides](#), [Reading List](/BMI702/lectures/module6/week12) -Apr 25 -: **Quiz**{: .label .label-green }[Week 13 pre-class quiz](#) (due Apr 30) - : [Canvas](https://canvas.harvard.edu/courses/117878) +Apr 19 +: **Quiz**{: .label .label-green }[Week 13 pre-class quiz](#) (due Apr 25) + : [Canvas](https://canvas.harvard.edu/courses/134015) diff --git a/_modules/week-13.md b/_modules/week-13.md index f9b1962..452ec22 100644 --- a/_modules/week-13.md +++ b/_modules/week-13.md @@ -2,16 +2,16 @@ title: Week 13 --- -Label-efficient learning, few-shot learning, biomarker discovery, indication inference, drug repurposing, adverse event prediction +Protein design and digital twins -May 1 -: **Module 6**{: .label .label-blue }**Lecture**{: .label .label-purple }[Therapeutic science and drug discovery Part II](/BMI702/lectures/module6/week13) - : [Slides](/BMI702/assets/zitnik-BMI702-L13.pdf), [Reading List](/BMI702/lectures/module6/week13) +Apr 25 +: **Module 6**{: .label .label-blue }**Lecture**{: .label .label-purple }[Generative AI Part II](/BMI702/lectures/module6/week13) + : [Slides](#), [Reading List](/BMI702/lectures/module6/week13) -May 2 -: **Quiz**{: .label .label-green }[Week 14 pre-class quiz](#) (due May 7) - : [Canvas](https://canvas.harvard.edu/courses/117878) +Apr 26 +: **Quiz**{: .label .label-green }[Week 14 pre-class quiz](#) (due May 2) + : [Canvas](https://canvas.harvard.edu/courses/134015) -May 3 +Apr 26 : **PSet due**{: .label .label-yellow }[PSet 3: Biomedical imaging methods and applications](#) - : [Canvas](https://canvas.harvard.edu/courses/117878) \ No newline at end of file + : [Canvas](https://canvas.harvard.edu/courses/134015) \ No newline at end of file diff --git a/_modules/week-14.md b/_modules/week-14.md index b9f4c32..332e4e7 100644 --- a/_modules/week-14.md +++ b/_modules/week-14.md @@ -4,7 +4,7 @@ title: Week 14 Introduction to ethical frameworks, data privacy, regulation and liability aspects of AI -May 8 +May 2 : **Lecture**{: .label .label-purple }[Ethical and legal considerations for biomedical AI ](/BMI702/lectures/week14) - : [Slides](/BMI702/assets/gerke-BMI702-L14.pdf), [Reading List](/BMI702/lectures/week14) + : [Slides](#), [Reading List](/BMI702/lectures/week14) diff --git a/_sass/color_schemes/harvardred.scss b/_sass/color_schemes/harvardred.scss index 138e4c8..1f1f859 100644 --- a/_sass/color_schemes/harvardred.scss +++ b/_sass/color_schemes/harvardred.scss @@ -7,7 +7,7 @@ $body-font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, "Helve // Layout $gutter-spacing: $sp-6; $gutter-spacing-sm: $sp-4; -$nav-width: 250px; +$nav-width: 300px; $content-width: 950px; // Components diff --git a/_schedules/weekly.md b/_schedules/weekly.md index 9e3a36e..7d57a36 100644 --- a/_schedules/weekly.md +++ b/_schedules/weekly.md @@ -23,32 +23,27 @@ timeline: schedule: - name: - name: Monday - events: - - name: Lecture - start: 1:00 PM - end: 3:00 PM - location: Armenise Modell 100A, 200 Longwood Ave - - name: OH Prof Zitnik - start: 3:00 PM - end: 4:00 PM - location: Countway 309, 10 Shattuck St - name: Tuesday events: - - name: OH Chen - start: 5:00 PM - end: 6:00 PM - location: Countway 423/424 Open area + - name: OH Ullanat + start: 3:00 PM + end: 4:00 PM + location: Countway 423/424 - name: Wednesday - name: Thursday events: - - name: OH Huang - start: 3:00 PM + - name: Lecture + start: 2:00 PM end: 4:00 PM - location: Countway 423/424 Open area + location: Countway 403 + - name: OH Prof Zitnik + start: 4:00 PM + end: 5:00 PM + location: Countway 309 - name: Friday events: - name: OH Ektefaie - start: 10:00 AM - end: 11:00 AM - location: Countway 423/424 Open area + start: 11:00 AM + end: 12:00 PM + location: Countway 423/424 --- diff --git a/_staffers/marinka.md b/_staffers/marinka.md index e80c908..f32ccb5 100644 --- a/_staffers/marinka.md +++ b/_staffers/marinka.md @@ -4,5 +4,5 @@ role: Instructor email: marinka@hms.harvard.edu website: https://zitniklab.hms.harvard.edu photo: marinka.png -office-hours: Mo, 3pm - 4pm +office-hours: Thu, 4pm - 5pm --- diff --git a/_staffers/richard.md b/_staffers/richard.md deleted file mode 100644 index 99fbf32..0000000 --- a/_staffers/richard.md +++ /dev/null @@ -1,8 +0,0 @@ ---- -name: Richard Chen -role: Staff -email: richardchen@g.harvard.edu -website: http://richarizardd.me -photo: richard.png -office-hours: Tue, 5pm - 6pm ---- diff --git a/_staffers/varun.md b/_staffers/varun.md new file mode 100644 index 0000000..6249b76 --- /dev/null +++ b/_staffers/varun.md @@ -0,0 +1,8 @@ +--- +name: Varun Ullanat +role: Staff +email: vullanat@hms.harvard.edu +website: https://dbmi.hms.harvard.edu/people/varun-ullanat +photo: varun.png +office-hours: Tue, 3pm - 4pm +--- diff --git a/_staffers/yasha.md b/_staffers/yasha.md index 71197b0..78d5589 100644 --- a/_staffers/yasha.md +++ b/_staffers/yasha.md @@ -4,5 +4,5 @@ role: Staff email: yasha_ektefaie@g.harvard.edu website: https://www.yashaektefaie.com photo: yasha.png -office-hours: Fri, 10am - 11am +office-hours: Fri, 11am - 12pm --- diff --git a/_staffers/yepeng.md b/_staffers/yepeng.md deleted file mode 100644 index 9d49b6a..0000000 --- a/_staffers/yepeng.md +++ /dev/null @@ -1,8 +0,0 @@ ---- -name: Yepeng Huang -role: Staff -email: yepenghuang@hsph.harvard.edu -website: https://www.linkedin.com/in/yepeng-huang -photo: yepeng.png -office-hours: Thu, 3pm - 4pm ---- diff --git a/assets/images/richard.png b/assets/images/richard.png deleted file mode 100644 index 3313c4e..0000000 Binary files a/assets/images/richard.png and /dev/null differ diff --git a/assets/images/varun.png b/assets/images/varun.png new file mode 100644 index 0000000..8305ef1 Binary files /dev/null and b/assets/images/varun.png differ diff --git a/assets/images/yepeng.png b/assets/images/yepeng.png deleted file mode 100644 index 8c64f10..0000000 Binary files a/assets/images/yepeng.png and /dev/null differ diff --git a/assets/zitnik-BMI702-L1.pdf b/assets/zitnik-BMI702-L1.pdf index 4553f9c..126c224 100644 Binary files a/assets/zitnik-BMI702-L1.pdf and b/assets/zitnik-BMI702-L1.pdf differ diff --git a/index.md b/index.md index b7f2910..18a4cb3 100644 --- a/index.md +++ b/index.md @@ -9,15 +9,15 @@ description: BMI 702 - Biomedical Artificial Intelligence # [BMI 702](https://dbmi.hms.harvard.edu/education/courses/bmi-702) | Biomedical Artificial Intelligence {: .mb-2 } -Harvard - Foundations of Biomedical Informatics II, Spring 2023 +Harvard - Foundations of Biomedical Informatics II, Spring 2024 {: .mb-0 .fs-6 .text-grey-dk-000 }
- Artificial intelligence is poised to enable breakthroughs in science and reshape medicine. This introductory course provides a survey of artificial intelligence for biomedical informatics, covering methods for key data modalities: clinical data, networks, language, and images. It introduces machine learning problems from a practical perspective, focusing on tasks that drive the adoption of machine learning in biology and medicine. + Artificial intelligence is poised to enable breakthroughs in science and reshape medicine. This course provides a survey of artificial intelligence for biomedical informatics, covering methods for key data modalities: clinical data, networks, language, and images. It introduces machine learning problems from a practical perspective, focusing on tasks that drive the adoption of machine learning in biology and medicine.
- It outlines foundational algorithms and emphasizes the subtleties of working with biomedical data and ways to evaluate and transition machine learning methods into biomedical and clinical implementation. An important consideration in this course is the broader impact of artificial intelligence, particularly topics of bias and fairness, interpretability, and ethical and legal considerations when dealing with artificial intelligence. + The curriculum delves into foundational algorithms and highlights the nuances of handling biomedical data. It places a strong emphasis on strategies for evaluating and seamlessly integrating machine learning methods into biomedical research and clinical practice. A key aspect of this course is its focus on the broader implications of artificial intelligence. This includes critical discussions on topics such as trustworthiness, interpretability, evaluation, and the ethical and legal challenges associated with the implementation of artificial intelligence in healthcare.