forked from spyflying/LSCM-Refseg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
LSCM_model_p2345.py
362 lines (310 loc) · 18.3 KB
/
LSCM_model_p2345.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
import numpy as np
import tensorflow as tf
import sys
from deeplab_resnet import model as deeplab101
from util.cell import ConvLSTMCell
from util import data_reader
from util.processing_tools import *
from util import loss
class LSCM_model(object):
def __init__(self, batch_size=1,
num_steps=30,
vf_h=40,
vf_w=40,
H=320,
W=320,
vf_dim=2048,
vocab_size=12112,
w_emb_dim=1000,
v_emb_dim=1000,
mlp_dim=500,
start_lr=0.00025,
lr_decay_step=800000,
lr_decay_rate=1.0,
rnn_size=1000,
keep_prob_rnn=1.0,
keep_prob_emb=1.0,
keep_prob_mlp=1.0,
num_rnn_layers=1,
optimizer='adam',
weight_decay=0.0005,
mode='eval',
conv5=False,
glove_dim=300,
emb_name='Gref'):
self.batch_size = batch_size
self.num_steps = num_steps
self.vf_h = vf_h
self.vf_w = vf_w
self.H = H
self.W = W
self.vf_dim = vf_dim
self.start_lr = start_lr
self.lr_decay_step = lr_decay_step
self.lr_decay_rate = lr_decay_rate
self.vocab_size = vocab_size
self.w_emb_dim = w_emb_dim
self.v_emb_dim = v_emb_dim
self.glove_dim = glove_dim
self.emb_name = emb_name
self.mlp_dim = mlp_dim
self.rnn_size = rnn_size
self.keep_prob_rnn = keep_prob_rnn
self.keep_prob_emb = keep_prob_emb
self.keep_prob_mlp = keep_prob_mlp
self.num_rnn_layers = num_rnn_layers
self.optimizer = optimizer
self.weight_decay = weight_decay
self.mode = mode
self.conv5 = conv5
self.words = tf.placeholder(tf.int32, [self.batch_size, self.num_steps])
self.im = tf.placeholder(tf.float32, [self.batch_size, self.H, self.W, 3])
self.target_fine = tf.placeholder(tf.float32, [self.batch_size, self.H, self.W, 1])
self.valid_idx = tf.placeholder(tf.int32, [self.batch_size, 1])
self.graph_adj = tf.placeholder(tf.float32, [self.batch_size, self.num_steps, self.num_steps])
self.tree_height = tf.placeholder(tf.int32, [self.batch_size, 1])
resmodel = deeplab101.DeepLabResNetModel({'data': self.im}, is_training=False)
self.visual_feat_c5 = resmodel.layers['res5c_relu']
self.visual_feat_c4 = resmodel.layers['res4b22_relu']
self.visual_feat_c3 = resmodel.layers['res3b3_relu']
self.visual_feat_c2 = resmodel.layers['res2c_relu'] # [2H, 2W, 256]
# GloVe Embedding
glove_np = np.load('data/{}_spacy_emb.npy'.format(self.emb_name))
print("Size of {} GloVe embedding: {}".format(self.emb_name, glove_np.shape))
self.glove = tf.convert_to_tensor(glove_np, tf.float32) # [vocab_size, 300]
# graph_adj trunc, [b, T, T]
self.adj_weight = tf.slice(self.graph_adj, [0, 0, 0],
[-1, self.num_steps - self.valid_idx[0, 0], self.num_steps - self.valid_idx[0, 0]])
with tf.variable_scope("text_objseg"):
self.build_graph()
if self.mode == 'eval':
return
self.train_op()
def build_graph(self):
print("#" * 30)
print("LSCM_model_p2345, function version")
print("#" * 30)
embedding_mat = tf.Variable(self.glove)
embedded_seq = tf.nn.embedding_lookup(embedding_mat,
tf.transpose(self.words)) # [num_step, batch_size, glove_emb]
print("Build Glove Embedding.")
rnn_cell_basic = tf.nn.rnn_cell.BasicLSTMCell(self.rnn_size, state_is_tuple=False)
if self.mode == 'train' and self.keep_prob_rnn < 1:
rnn_cell_basic = tf.nn.rnn_cell.DropoutWrapper(rnn_cell_basic, output_keep_prob=self.keep_prob_rnn)
cell = tf.nn.rnn_cell.MultiRNNCell([rnn_cell_basic] * self.num_rnn_layers, state_is_tuple=False)
state = cell.zero_state(self.batch_size, tf.float32)
state_shape = state.get_shape().as_list()
state_shape[0] = self.batch_size
state.set_shape(state_shape)
words_feat_list = []
def f1():
# return tf.constant(0.), state
return tf.zeros([self.batch_size, self.rnn_size]), state
def f2():
# Word input to embedding layer
w_emb = embedded_seq[n, :, :]
if self.mode == 'train' and self.keep_prob_emb < 1:
w_emb = tf.nn.dropout(w_emb, self.keep_prob_emb)
return cell(w_emb, state)
with tf.variable_scope("RNN"):
for n in range(self.num_steps):
if n > 0:
tf.get_variable_scope().reuse_variables()
# rnn_output, state = cell(w_emb, state)
rnn_output, state = tf.cond(tf.equal(self.words[0, n], tf.constant(0)), f1, f2)
word_feat = tf.reshape(rnn_output, [self.batch_size, 1, self.rnn_size])
words_feat_list.append(word_feat)
# words_feat: [B, num_steps, rnn_size]
words_feat = tf.concat(words_feat_list, 1)
words_feat = tf.slice(words_feat, [0, self.valid_idx[0, 0], 0],
[-1, self.num_steps - self.valid_idx[0, 0], -1]) # [B, T, C]
lang_feat = tf.reduce_max(words_feat, 1) # [rnn_dim]
lang_feat = tf.reshape(lang_feat, [self.batch_size, 1, 1, self.rnn_size])
lang_feat = tf.nn.l2_normalize(lang_feat, 3) # [B, 1, 1, C]
words_feat = tf.nn.l2_normalize(words_feat, 2)
# words_feat: [B, 1, num_words, rnn_size]
words_feat = tf.expand_dims(words_feat, 1)
visual_feat_c5 = self._conv("c5_lateral", self.visual_feat_c5, 1, self.vf_dim, self.v_emb_dim, [1, 1, 1, 1])
visual_feat_c5 = tf.nn.l2_normalize(visual_feat_c5, 3)
visual_feat_c4 = self._conv("c4_lateral", self.visual_feat_c4, 1, 1024, self.v_emb_dim, [1, 1, 1, 1])
visual_feat_c4 = tf.nn.l2_normalize(visual_feat_c4, 3)
visual_feat_c3 = self._conv("c3_lateral", self.visual_feat_c3, 1, 512, self.v_emb_dim, [1, 1, 1, 1])
visual_feat_c3 = tf.nn.l2_normalize(visual_feat_c3, 3)
visual_feat_c2 = self._conv("c2_lateral", self.visual_feat_c2, 3, 256, self.v_emb_dim, [1, 2, 2, 1])
visual_feat_c2 = tf.nn.l2_normalize(visual_feat_c2, 3)
# Generate spatial grid
spatial = tf.convert_to_tensor(generate_spatial_batch(self.batch_size, self.vf_h, self.vf_w))
fusion_c5 = self.build_full_module(visual_feat_c5, words_feat, lang_feat, spatial, level="c5")
fusion_c4 = self.build_full_module(visual_feat_c4, words_feat, lang_feat, spatial, level="c4")
fusion_c3 = self.build_full_module(visual_feat_c3, words_feat, lang_feat, spatial, level="c3")
fusion_c2 = self.build_full_module(visual_feat_c2, words_feat, lang_feat, spatial, level="c2")
score_c5 = self._conv("score_c5", fusion_c5, 3, self.mlp_dim, 1, [1, 1, 1, 1])
self.up_c5 = tf.image.resize_bilinear(score_c5, [self.H, self.W])
score_c4 = self._conv("score_c4", fusion_c4, 3, self.mlp_dim, 1, [1, 1, 1, 1])
self.up_c4 = tf.image.resize_bilinear(score_c4, [self.H, self.W])
score_c3 = self._conv("score_c3", fusion_c3, 3, self.mlp_dim, 1, [1, 1, 1, 1])
self.up_c3 = tf.image.resize_bilinear(score_c3, [self.H, self.W])
score_c2 = self._conv("score_c2", fusion_c2, 3, self.mlp_dim, 1, [1, 1, 1, 1])
self.up_c2 = tf.image.resize_bilinear(score_c2, [self.H, self.W])
# Convolutional LSTM
convlstm_cell = ConvLSTMCell([self.vf_h, self.vf_w], self.mlp_dim, [1, 1])
convlstm_outputs, states = tf.nn.dynamic_rnn(convlstm_cell, tf.convert_to_tensor(
[[fusion_c5[0], fusion_c4[0], fusion_c3[0], fusion_c2[0], fusion_c3[0], fusion_c4[0], fusion_c5[0]]]),
dtype=tf.float32)
score = self._conv("score", convlstm_outputs[:, -1], 3, self.mlp_dim, 1, [1, 1, 1, 1])
self.pred = score
self.up = tf.image.resize_bilinear(self.pred, [self.H, self.W])
self.sigm = tf.sigmoid(self.up)
def mutan_head(self, lang_feat, spatial_feat, visual_feat, level=''):
# visual feature transform
vis_trans = tf.concat([visual_feat, spatial_feat], 3) # [B, H, W, C+8]
vis_trans = self._conv("vis_trans_{}".format(level), vis_trans, 1,
self.v_emb_dim+8, self.v_emb_dim, [1, 1, 1, 1])
vis_trans = tf.nn.tanh(vis_trans) # [B, H, W, C]
# lang feature transform
lang_trans = self._conv("lang_trans_{}".format(level), lang_feat,
1, self.rnn_size, self.v_emb_dim, [1, 1, 1, 1])
lang_trans = tf.nn.tanh(lang_trans) # [B, 1, 1, C]
mutan_feat = vis_trans * lang_trans # [B, H, W, C]
return mutan_feat
def mutan_fusion(self, lang_feat, spatial_feat, visual_feat, level=''):
# fuse language feature and visual feature
# lang_feat: [B, 1, 1, C], visual_feat: [B, H, W, C], spatial_feat: [B, H, W, 8]
# output: [B, H, W, C']
head1 = self.mutan_head(lang_feat, spatial_feat, visual_feat, '{}_head1'.format(level))
head2 = self.mutan_head(lang_feat, spatial_feat, visual_feat, '{}_head2'.format(level))
head3 = self.mutan_head(lang_feat, spatial_feat, visual_feat, '{}_head3'.format(level))
head4 = self.mutan_head(lang_feat, spatial_feat, visual_feat, '{}_head4'.format(level))
head5 = self.mutan_head(lang_feat, spatial_feat, visual_feat, '{}_head5'.format(level))
fused_feats = tf.stack([head1, head2, head3, head4, head5], axis=4) # [B, H, W, C, 5]
fused_feats = tf.reduce_sum(fused_feats, 4) # [B, H, W, C]
fused_feats = tf.nn.tanh(fused_feats)
fused_feats = tf.nn.l2_normalize(fused_feats, 3)
print("Build Mutan Fusion Module.")
return fused_feats
def build_full_module(self, visual_feat, words_feat, lang_feat, spatial, level=""):
mm_feat = self.mutan_fusion(lang_feat, spatial, visual_feat, level=level)
print("Build Mutan Fusion Module")
vagr_feat = self.build_lscm(mm_feat, words_feat, spatial, level=level)
print("Build Visual Attention Module")
tiled_lang_feat = tf.tile(lang_feat, [1, self.vf_w, self.vf_h, 1]) # [b, h, w, C]
feat_all = tf.concat([mm_feat, vagr_feat, tiled_lang_feat, spatial], 3)
# Feature fusion
fusion = self._conv("fusion_{}".format(level), feat_all, 1, self.v_emb_dim * 2 + self.rnn_size + 8,
self.mlp_dim, [1, 1, 1, 1])
fusion = tf.nn.relu(fusion)
return fusion
def graph_conv(self, graph_feat, nodes_num, nodes_dim, adj_mat, graph_name="", level=""):
# Node message passing
graph_feat_reshaped = tf.reshape(graph_feat, [self.batch_size, nodes_num, nodes_dim])
gconv_feat = tf.matmul(adj_mat, graph_feat_reshaped) # [B, nodes_num, nodes_dim]
gconv_feat = tf.reshape(gconv_feat, [self.batch_size, 1, nodes_num, nodes_dim])
gconv_feat = tf.contrib.layers.layer_norm(gconv_feat,
scope="gconv_feat_ln_{}_{}".format(graph_name, level))
gconv_feat = graph_feat + gconv_feat
gconv_feat = tf.nn.relu(gconv_feat) # [B, 1, nodes_num, nodes_dim]
gconv_update = self._conv("gconv_update_{}_{}".format(graph_name, level),
gconv_feat, 1, nodes_dim, nodes_dim, [1, 1, 1, 1])
gconv_update = tf.contrib.layers.layer_norm(gconv_update,
scope="gconv_update_ln_{}_{}".format(graph_name, level))
gconv_update = tf.nn.relu(gconv_update)
return gconv_update
def build_lscm(self, vis_la_sp, words_feat, spatial, level=""):
# Visual Attention
vis_key = self._conv("vis_key_{}".format(level), vis_la_sp, 1, self.v_emb_dim, self.v_emb_dim, [1, 1, 1, 1])
vis_key = tf.reshape(vis_key, [self.batch_size, self.vf_h * self.vf_w, self.v_emb_dim])
words_query = self._conv("words_query_{}".format(level), words_feat, 1, self.rnn_size, self.rnn_size,
[1, 1, 1, 1])
words_query = tf.reshape(words_query, [self.batch_size, self.num_steps - self.valid_idx[0, 0], self.rnn_size])
vis_la_sp = tf.reshape(vis_la_sp, [self.batch_size, self.vf_h * self.vf_w, self.v_emb_dim])
vis_attn_map = tf.matmul(vis_key, words_query, transpose_b=True) # [B, vf_h * vf_w, num_words]
# Normalization for affinity matrix
vis_attn_map = tf.divide(vis_attn_map, self.rnn_size ** 0.5)
vis_attn_map = tf.nn.softmax(vis_attn_map, axis=1)
# Adjacent matrix node message passing
vis_attn_feat = tf.matmul(vis_attn_map, vis_la_sp, transpose_a=True) # [B, num_words, v_emb_dim]
vis_attn_feat = tf.reshape(vis_attn_feat,
[self.batch_size, 1, self.num_steps - self.valid_idx[0, 0], self.v_emb_dim])
vis_attn_feat = tf.nn.l2_normalize(vis_attn_feat, 3) # [B, 1, num_words, v_emb_dim]
vagr_query = self._conv("vagr_query_{}".format(level), vis_attn_feat, 1, self.v_emb_dim, self.v_emb_dim,
[1, 1, 1, 1])
vagr_query = tf.reshape(vagr_query, [self.batch_size, self.num_steps - self.valid_idx[0, 0], self.v_emb_dim])
vagr_key = self._conv("vagr_key_{}".format(level), vis_attn_feat, 1, self.v_emb_dim, self.v_emb_dim,
[1, 1, 1, 1])
vagr_key = tf.reshape(vagr_key, [self.batch_size, self.num_steps - self.valid_idx[0, 0], self.v_emb_dim])
vagr_mat = tf.matmul(vagr_query, vagr_key, transpose_b=True) # [B, num_words, num_words]
# Normalization for affinity matrix
vagr_mat = tf.divide(vagr_mat, self.v_emb_dim ** 0.5)
vagr_mat = tf.nn.softmax(vagr_mat, axis=2)
# translate to tree adj mat
vagr_mat = vagr_mat * self.adj_weight
# Adjacent matrix node message passing
vagr_feat = self.graph_conv(vis_attn_feat, self.num_steps - self.valid_idx[0, 0],
self.v_emb_dim, vagr_mat, "g1", level)
# [B, num_words, v_emb_dim]
vagr_feat = tf.reshape(vagr_feat, [self.batch_size, self.num_steps - self.valid_idx[0, 0], self.v_emb_dim])
vagr_feat = tf.matmul(vis_attn_map, vagr_feat) # [B, vf_h * vf_w, v_emb_dim]
vagr_feat = tf.reshape(vagr_feat, [self.batch_size, self.vf_h, self.vf_w, self.v_emb_dim])
vagr_feat = tf.nn.l2_normalize(vagr_feat, 3)
return vagr_feat
def _conv(self, name, x, filter_size, in_filters, out_filters, strides):
with tf.variable_scope(name):
w = tf.get_variable('DW', [filter_size, filter_size, in_filters, out_filters],
initializer=tf.contrib.layers.xavier_initializer_conv2d())
b = tf.get_variable('biases', out_filters, initializer=tf.constant_initializer(0.))
return tf.nn.conv2d(x, w, strides, padding='SAME') + b
def _atrous_conv(self, name, x, filter_size, in_filters, out_filters, rate):
with tf.variable_scope(name):
w = tf.get_variable('DW', [filter_size, filter_size, in_filters, out_filters],
initializer=tf.random_normal_initializer(stddev=0.01))
b = tf.get_variable('biases', out_filters, initializer=tf.constant_initializer(0.))
return tf.nn.atrous_conv2d(x, w, rate=rate, padding='SAME') + b
def train_op(self):
if self.conv5:
tvars = [var for var in tf.trainable_variables() if var.op.name.startswith('text_objseg')
or var.name.startswith('res5') or var.name.startswith('res4')
or var.name.startswith('res3')]
else:
tvars = [var for var in tf.trainable_variables() if var.op.name.startswith('text_objseg')]
reg_var_list = [var for var in tvars if var.op.name.find(r'DW') > 0 or var.name[-9:-2] == 'weights']
print('Collecting variables for regularization:')
for var in reg_var_list: print('\t%s' % var.name)
print('Done.')
# define loss
self.target = tf.image.resize_bilinear(self.target_fine, [self.vf_h, self.vf_w])
self.cls_loss_c5 = loss.weighed_logistic_loss(self.up_c5, self.target_fine, 1, 1)
self.cls_loss_c4 = loss.weighed_logistic_loss(self.up_c4, self.target_fine, 1, 1)
self.cls_loss_c3 = loss.weighed_logistic_loss(self.up_c3, self.target_fine, 1, 1)
self.cls_loss_c2 = loss.weighed_logistic_loss(self.up_c2, self.target_fine, 1, 1)
self.cls_loss = loss.weighed_logistic_loss(self.up, self.target_fine, 1, 1)
self.cls_loss_all = 0.6 * self.cls_loss + 0.1 * self.cls_loss_c5 + 0.1 * self.cls_loss_c4 \
+ 0.1 * self.cls_loss_c3 + 0.1 * self.cls_loss_c2
self.reg_loss = loss.l2_regularization_loss(reg_var_list, self.weight_decay)
self.cost = self.cls_loss_all + self.reg_loss
# learning rate
lr = tf.Variable(0.0, trainable=False)
self.learning_rate = tf.train.polynomial_decay(self.start_lr, lr, self.lr_decay_step, end_learning_rate=0.00001,
power=0.9)
# optimizer
if self.optimizer == 'adam':
optimizer = tf.train.AdamOptimizer(self.learning_rate)
else:
raise ValueError("Unknown optimizer type %s!" % self.optimizer)
# learning rate multiplier
grads_and_vars = optimizer.compute_gradients(self.cost, var_list=tvars)
var_lr_mult = {}
for var in tvars:
if var.op.name.find(r'biases') > 0:
var_lr_mult[var] = 2.0
elif var.name.startswith('res5') or var.name.startswith('res4') or var.name.startswith('res3'):
var_lr_mult[var] = 1.0
else:
var_lr_mult[var] = 1.0
print('Variable learning rate multiplication:')
for var in tvars:
print('\t%s: %f' % (var.name, var_lr_mult[var]))
print('Done.')
grads_and_vars = [((g if var_lr_mult[v] == 1 else tf.multiply(var_lr_mult[v], g)), v) for g, v in
grads_and_vars]
# training step
self.train_step = optimizer.apply_gradients(grads_and_vars, global_step=lr)