-
Notifications
You must be signed in to change notification settings - Fork 2
/
parse_scanned_data.py
300 lines (245 loc) · 10.9 KB
/
parse_scanned_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import os
import cv2
import tqdm
import numpy as np
import os.path as osp
import argparse
from pathlib import Path
from transforms3d import affines, quaternions
from src.utils import data_utils
def get_arkit_default_path(data_dir):
video_file = osp.join(data_dir, 'Frames.m4v')
color_dir = osp.join(data_dir, 'color')
Path(color_dir).mkdir(parents=True, exist_ok=True)
box_file = osp.join(data_dir, 'Box.txt')
assert Path(box_file).exists()
out_3D_box_dir = osp.join(osp.dirname(data_dir), 'box3d_corners.txt')
out_pose_dir = osp.join(data_dir, 'poses')
Path(out_pose_dir).mkdir(parents=True, exist_ok=True)
pose_file = osp.join(data_dir, 'ARposes.txt')
assert Path(pose_file).exists()
reproj_box_dir = osp.join(data_dir, 'reproj_box')
Path(reproj_box_dir).mkdir(parents=True, exist_ok=True)
out_box_dir = osp.join(data_dir, 'bbox')
Path(out_box_dir).mkdir(parents=True, exist_ok=True)
orig_intrin_file = osp.join(data_dir, 'Frames.txt')
assert Path(orig_intrin_file).exists()
final_intrin_file = osp.join(data_dir, 'intrinsics.txt')
intrin_dir = osp.join(data_dir, 'intrin')
Path(intrin_dir).mkdir(parents=True, exist_ok=True)
M_dir = osp.join(data_dir, 'M')
Path(M_dir).mkdir(parents=True, exist_ok=True)
paths = {
'video_file': video_file,
'color_dir': color_dir,
'box_path': box_file,
'pose_file': pose_file,
'out_box_dir': out_box_dir,
'out_3D_box_dir': out_3D_box_dir,
'reproj_box_dir': reproj_box_dir,
'out_pose_dir': out_pose_dir,
'orig_intrin_file': orig_intrin_file,
'final_intrin_file': final_intrin_file,
'intrin_dir': intrin_dir,
'M_dir': M_dir
}
return paths
def get_test_default_path(data_dir):
video_file = osp.join(data_dir, 'Frames.m4v')
box_file = osp.join(data_dir, 'Box.txt')
if osp.exists(box_file):
os.remove(box_file)
color_full_dir = osp.join(data_dir, 'color_full')
Path(color_full_dir).mkdir(parents=True, exist_ok=True)
pose_file = osp.join(data_dir, 'ARposes.txt')
if osp.exists(pose_file):
os.remove(pose_file)
orig_intrin_file = osp.join(data_dir, 'Frames.txt')
final_intrin_file = osp.join(data_dir, 'intrinsics.txt')
paths = {
'video_file': video_file,
'color_full_dir': color_full_dir,
'orig_intrin_file': orig_intrin_file,
'final_intrin_file': final_intrin_file,
}
return paths
def get_bbox3d(box_path):
assert Path(box_path).exists()
with open(box_path, 'r') as f:
lines = f.readlines()
box_data = [float(e) for e in lines[1].strip().split(',')]
px, py, pz = box_data[:3]
ex, ey, ez = box_data[3:6]
ex /= 2
ey /= 2
ez /= 2
bbox_3d = np.array(
[
[px - ex, py - ey, pz - ez], # back, left, down
[px + ex, py - ey, pz - ez], # front, left, down
[px + ex, py - ey, pz + ez], # front, left, up
[px - ex, py - ey, pz + ez], # back, left, up
[px - ex, py + ey, pz - ez], # back, right, down
[px + ex, py + ey, pz - ez], # front, right, down
[px + ex, py + ey, pz + ez], # front, right, up
[px - ex, py + ey, pz + ez], # back, right, up
]
)
bbox_3d_homo = np.concatenate([bbox_3d, np.ones((8, 1))], axis=1)
return bbox_3d, bbox_3d_homo
def parse_box(box_path):
with open(box_path, 'r') as f:
lines = f.readlines()
data = [float(e) for e in lines[1].strip().split(',')]
position = data[:3]
quaternion = data[6:]
rot_mat = quaternions.quat2mat(quaternion)
T_ow = affines.compose(position, rot_mat, np.ones(3))
return T_ow
def reproj(K_homo, pose, points3d_homo):
assert K_homo.shape == (3, 4)
assert pose.shape == (4, 4)
assert points3d_homo.shape[0] == 4 # [4 ,n]
reproj_points = K_homo @ pose @ points3d_homo
reproj_points = reproj_points[:] / reproj_points[2:]
reproj_points = reproj_points[:2, :].T
return reproj_points # [n, 2]
def parse_video(paths, downsample_rate=5, bbox_3d_homo=None, hw=512):
orig_intrin_file = paths['final_intrin_file']
K, K_homo = data_utils.get_K(orig_intrin_file)
intrin_dir = paths['intrin_dir']
cap = cv2.VideoCapture(paths['video_file'])
index = 0
while True:
ret, image = cap.read()
if not ret:
break
if index % downsample_rate == 0:
img_name = osp.join(paths['color_dir'], '{}.png'.format(index))
save_intrin_path = osp.join(intrin_dir, '{}.txt'.format(index))
reproj_box3d_file = osp.join(paths['reproj_box_dir'], '{}.txt'.format(index))
if not osp.isfile(reproj_box3d_file):
continue
reproj_box3d = np.loadtxt(osp.join(paths['reproj_box_dir'], '{}.txt'.format(index))).astype(int)
x0, y0 = reproj_box3d.min(0)
x1, y1 = reproj_box3d.max(0)
box = np.array([x0, y0, x1, y1])
resize_shape = np.array([y1 - y0, x1 - x0])
K_crop, K_crop_homo = data_utils.get_K_crop_resize(box, K, resize_shape)
image_crop, trans1 = data_utils.get_image_crop_resize(image, box, resize_shape)
box_new = np.array([0, 0, x1-x0, y1-y0])
resize_shape = np.array([hw, hw])
K_crop, K_crop_homo = data_utils.get_K_crop_resize(box_new, K_crop, resize_shape)
image_crop, trans2 = data_utils.get_image_crop_resize(image_crop, box_new, resize_shape)
trans_full_to_crop = trans2 @ trans1
trans_crop_to_full = np.linalg.inv(trans_full_to_crop)
np.savetxt(osp.join(paths['M_dir'], '{}.txt'.format(index)), trans_crop_to_full)
pose = np.loadtxt(osp.join(paths['out_pose_dir'], '{}.txt'.format(index)))
reproj_crop = reproj(K_crop_homo, pose, bbox_3d_homo.T)
x0_new, y0_new = reproj_crop.min(0)
x1_new, y1_new = reproj_crop.max(0)
box_new = np.array([x0_new, y0_new, x1_new, y1_new])
np.savetxt(osp.join(paths['out_box_dir'], '{}.txt'.format(index)), box_new)
cv2.imwrite(img_name, image_crop)
# cv2.imwrite(out_mask_file, mask_crop)
full_img_dir = paths['color_dir'] + '_full'
Path(full_img_dir).mkdir(exist_ok=True, parents=True)
cv2.imwrite(osp.join(full_img_dir, '{}.png'.format(index)), image)
np.savetxt(save_intrin_path, K_crop)
index += 1
cap.release()
def data_process_anno(data_dir, downsample_rate=1, hw=512):
paths = get_arkit_default_path(data_dir)
with open(paths['orig_intrin_file'], 'r') as f:
lines = [l.strip() for l in f.readlines() if len(l) > 0 and l[0] != '#']
eles = [[float(e) for e in l.split(',')] for l in lines]
data = np.array(eles)
fx, fy, cx, cy = np.average(data, axis=0)[2:]
with open(paths['final_intrin_file'], 'w') as f:
f.write('fx: {0}\nfy: {1}\ncx: {2}\ncy: {3}'.format(fx, fy, cx, cy))
bbox_3d, bbox_3d_homo = get_bbox3d(paths['box_path'])
np.savetxt(paths['out_3D_box_dir'], bbox_3d)
K_homo = np.array([
[fx, 0, cx, 0],
[0, fy, cy, 0],
[0, 0, 1, 0]
])
with open(paths['pose_file'], 'r') as f:
lines = [l.strip() for l in f.readlines()]
index = 0
for line in tqdm.tqdm(lines):
if len(line) == 0 or line[0] == '#':
continue
if index % downsample_rate == 0:
eles = line.split(',')
data = [float(e) for e in eles]
position = data[1:4]
rot_mat = np.array(data[4:]).reshape(3, 3)
T_wc = affines.compose(position, rot_mat, np.ones(3))
T_ow = np.array([[1,0,0,0],
[0,1,0,0],
[0,0,1,0],
[0,0,0,1]])
T_oc = T_wc @ T_ow
pose_save_path = osp.join(paths['out_pose_dir'], '{}.txt'.format(index))
box_save_path = osp.join(paths['reproj_box_dir'], '{}.txt'.format(index))
reproj_box3d = reproj(K_homo, T_oc, bbox_3d_homo.T)
x0, y0 = reproj_box3d.min(0)
x1, y1 = reproj_box3d.max(0)
if x0 < -1000 or y0 < -1000 or x1 > 3000 or y1 > 3000:
continue
np.savetxt(pose_save_path, T_oc)
np.savetxt(box_save_path, reproj_box3d)
index += 1
parse_video(paths, downsample_rate, bbox_3d_homo, hw=hw)
# Make fake data for demo annotate video without BA refinement:
if osp.exists(osp.join(osp.dirname(paths['intrin_dir']), 'intrin_ba')):
os.system(f"rm -rf {osp.join(osp.dirname(paths['intrin_dir']), 'intrin_ba')}")
os.system(f"ln -s {paths['intrin_dir']} {osp.join(osp.dirname(paths['intrin_dir']), 'intrin_ba')}")
if osp.exists(osp.join(osp.dirname(paths['out_pose_dir']), 'poses_ba')):
os.system(f"rm -rf {osp.join(osp.dirname(paths['out_pose_dir']), 'poses_ba')}")
os.system(f"ln -s {paths['out_pose_dir']} {osp.join(osp.dirname(paths['out_pose_dir']), 'poses_ba')}")
def data_process_test(data_dir, downsample_rate=1):
paths = get_test_default_path(data_dir)
# Parse intrinsic:
with open(paths['orig_intrin_file'], 'r') as f:
lines = [l.strip() for l in f.readlines() if len(l) > 0 and l[0] != '#']
eles = [[float(e) for e in l.split(',')] for l in lines]
data = np.array(eles)
fx, fy, cx, cy = np.average(data, axis=0)[2:]
with open(paths['final_intrin_file'], 'w') as f:
f.write('fx: {0}\nfy: {1}\ncx: {2}\ncy: {3}'.format(fx, fy, cx, cy))
# Parse video:
cap = cv2.VideoCapture(paths['video_file'])
index = 0
while True:
ret, image = cap.read()
if not ret:
break
if index % downsample_rate == 0:
full_img_dir = paths['color_full_dir']
cv2.imwrite(osp.join(full_img_dir, '{}.png'.format(index)), image)
index += 1
cap.release()
def parse_args():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument("--scanned_object_path", type=str, required=True)
args = parser.parse_args()
return args
if __name__ == "__main__":
args = parse_args()
data_dir = args.scanned_object_path
assert osp.exists(data_dir), f"Scanned object path:{data_dir} not exists!"
seq_dirs = os.listdir(data_dir)
for seq_dir in seq_dirs:
if '-test' in seq_dir:
# Parse scanned test sequence
print('=> Processing test sequence: ', seq_dir)
data_process_test(osp.join(data_dir, seq_dir), downsample_rate=1)
elif '-annotate' in seq_dir:
print('=> Processing annotate sequence: ', seq_dir)
data_process_anno(osp.join(data_dir, seq_dir), downsample_rate=1, hw=512)
else:
continue