diff --git a/pkgdown.yml b/pkgdown.yml
index 3a4c2675..3a517b60 100644
--- a/pkgdown.yml
+++ b/pkgdown.yml
@@ -2,7 +2,7 @@ pandoc: 2.19.2
pkgdown: 2.0.7
pkgdown_sha: ~
articles: {}
-last_built: 2023-12-23T07:09Z
+last_built: 2023-12-24T01:54Z
urls:
reference: https://mlr3cluster.mlr-org.com/reference
article: https://mlr3cluster.mlr-org.com/articles
diff --git a/reference/mlr_learners_clust.ap.html b/reference/mlr_learners_clust.ap.html
index ea8314ea..5d5e2971 100644
--- a/reference/mlr_learners_clust.ap.html
+++ b/reference/mlr_learners_clust.ap.html
@@ -1,16 +1,12 @@
Affinity Propagation Clustering Learner — mlr_learners_clust.ap • mlr3cluster
A LearnerClust for Affinity Propagation clustering implemented in apcluster::apcluster()
.
apcluster::apcluster()
doesn't have set a default for similarity function.
-Therefore, the s
parameter here is set to apcluster::negDistMat(r = 2L)
by default
-since this is what is used in the original paper on Affity Propagation clustering.
The predict method computes the closest cluster exemplar to find the
cluster memberships for new data.
The code is taken from
@@ -123,7 +117,7 @@
Id Type Default Levels Range s untyped apcluster::negDistMat, 2 - p untyped NA - q numeric - \([0, 1]\) maxits integer 1000 \([1, \infty)\) convits integer 100 \([1, \infty)\) lam numeric 0.9 \([0.5, 1]\) includeSim logical FALSE TRUE, FALSE - details logical FALSE TRUE, FALSE - nonoise logical FALSE TRUE, FALSE - seed integer - \((-\infty, \infty)\)
+Id Type Default Levels Range s untyped - - p untyped NA - q numeric - \([0, 1]\) maxits integer 1000 \([1, \infty)\) convits integer 100 \([1, \infty)\) lam numeric 0.9 \([0.5, 1]\) includeSim logical FALSE TRUE, FALSE - details logical FALSE TRUE, FALSE - nonoise logical FALSE TRUE, FALSE - seed integer - \((-\infty, \infty)\)
Super classes
mlr3::Learner
-> mlr3cluster::LearnerClust
-> LearnerClustAP
@@ -183,7 +177,7 @@
Examples}
#> <LearnerClustAP:clust.ap>: Affinity Propagation Clustering
#> * Model: -
-#> * Parameters: s=<function>
+#> * Parameters: list()
#> * Packages: mlr3, mlr3cluster, apcluster
#> * Predict Types: [partition]
#> * Feature Types: logical, integer, numeric
diff --git a/search.json b/search.json
index efa6864e..7ef7687c 100644
--- a/search.json
+++ b/search.json
@@ -1 +1 @@
-[{"path":"https://mlr3cluster.mlr-org.com/authors.html","id":null,"dir":"","previous_headings":"","what":"Authors","title":"Authors and Citation","text":"Damir Pulatov. Maintainer, author. Michel Lang. Author.","code":""},{"path":"https://mlr3cluster.mlr-org.com/authors.html","id":"citation","dir":"","previous_headings":"","what":"Citation","title":"Authors and Citation","text":"Pulatov D, Lang M (2023). mlr3cluster: Cluster Extension 'mlr3'. R package version 0.1.8.9000, https://github.com/mlr-org/mlr3cluster, https://mlr3cluster.mlr-org.com.","code":"@Manual{, title = {mlr3cluster: Cluster Extension for 'mlr3'}, author = {Damir Pulatov and Michel Lang}, year = {2023}, note = {R package version 0.1.8.9000, https://github.com/mlr-org/mlr3cluster}, url = {https://mlr3cluster.mlr-org.com}, }"},{"path":"https://mlr3cluster.mlr-org.com/index.html","id":"mlr3cluster","dir":"","previous_headings":"","what":"Cluster Extension for mlr3","title":"Cluster Extension for mlr3","text":"Cluster analysis mlr3 mlr3cluster extension package cluster analysis within mlr3 ecosystem. successor clustering capabilities mlr2.","code":""},{"path":"https://mlr3cluster.mlr-org.com/index.html","id":"installation","dir":"","previous_headings":"","what":"Installation","title":"Cluster Extension for mlr3","text":"Install last release CRAN: Install development version GitHub:","code":"install.packages(\"mlr3cluster\") devtools::install_github(\"mlr-org/mlr3cluster\")"},{"path":"https://mlr3cluster.mlr-org.com/index.html","id":"feature-overview","dir":"","previous_headings":"","what":"Feature Overview","title":"Cluster Extension for mlr3","text":"current version mlr3cluster contains: selection 19 clustering learners represent wide variety clusterers: partitional, hierarchical, fuzzy, etc. selection 4 performance measures Two built-tasks get started clustering Also, package integrated mlr3viz enables create great visualizations just one line code!","code":""},{"path":[]},{"path":[]},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/index.html","id":"example","dir":"","previous_headings":"","what":"Example","title":"Cluster Extension for mlr3","text":"","code":"library(mlr3) library(mlr3cluster) task = mlr_tasks$get(\"usarrests\") learner = mlr_learners$get(\"clust.kmeans\") learner$train(task) preds = learner$predict(task = task)"},{"path":"https://mlr3cluster.mlr-org.com/index.html","id":"more-resources","dir":"","previous_headings":"","what":"More Resources","title":"Cluster Extension for mlr3","text":"Check blogpost detailed introduction package. Also, mlr3book section clustering.","code":""},{"path":"https://mlr3cluster.mlr-org.com/index.html","id":"future-plans","dir":"","previous_headings":"","what":"Future Plans","title":"Cluster Extension for mlr3","text":"Add learners measures Integrate package mlr3pipelines (work progress) questions, feedback ideas, feel free open issue .","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/LearnerClust.html","id":null,"dir":"Reference","previous_headings":"","what":"Cluster Learner — LearnerClust","title":"Cluster Learner — LearnerClust","text":"Learner specializes mlr3::Learner cluster problems: task_type set \"clust\". Creates Predictions class PredictionClust. Possible values predict_types : \"partition\": Integer indicating cluster membership. \"prob\": Probability belonging cluster. Predefined learners can found mlr3misc::Dictionary mlr3::mlr_learners.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/LearnerClust.html","id":"super-class","dir":"Reference","previous_headings":"","what":"Super class","title":"Cluster Learner — LearnerClust","text":"mlr3::Learner -> LearnerClust","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/LearnerClust.html","id":"public-fields","dir":"Reference","previous_headings":"","what":"Public fields","title":"Cluster Learner — LearnerClust","text":"assignments (NULL | vector()) Cluster assignments learned model. save_assignments (logical()) assignments 'train' data saved learner? Default TRUE.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/LearnerClust.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Cluster Learner — LearnerClust","text":"mlr3::Learner$base_learner() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/LearnerClust.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Cluster Learner — LearnerClust","text":"LearnerClust$new() LearnerClust$reset() LearnerClust$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/LearnerClust.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Cluster Learner — LearnerClust","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/LearnerClust.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Cluster Learner — LearnerClust","text":"","code":"LearnerClust$new( id, param_set = ps(), predict_types = \"partition\", feature_types = character(), properties = character(), packages = character(), label = NA_character_, man = NA_character_ )"},{"path":"https://mlr3cluster.mlr-org.com/reference/LearnerClust.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Cluster Learner — LearnerClust","text":"id (character(1)) Identifier new instance. param_set (paradox::ParamSet) Set hyperparameters. predict_types (character()) Supported predict types. Must subset mlr_reflections$learner_predict_types. feature_types (character()) Feature types learner operates . Must subset mlr_reflections$task_feature_types. properties (character()) Set properties Learner. Must subset mlr_reflections$learner_properties. following properties currently standardized understood learners mlr3: \"missings\": learner can handle missing values data. \"weights\": learner supports observation weights. \"importance\": learner supports extraction importance scores, .e. comes $importance() extractor function (see section optional extractors Learner). \"selected_features\": learner supports extraction set selected features, .e. comes $selected_features() extractor function (see section optional extractors Learner). \"oob_error\": learner supports extraction estimated bag error, .e. comes oob_error() extractor function (see section optional extractors Learner). packages (character()) Set required packages. warning signaled constructor least one packages installed, loaded (attached) later -demand via requireNamespace(). label (character(1)) Label new instance. man (character(1)) String format [pkg]::[topic] pointing manual page object. referenced help package can opened via method $help().","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/LearnerClust.html","id":"method-reset-","dir":"Reference","previous_headings":"","what":"Method reset()","title":"Cluster Learner — LearnerClust","text":"Reset assignments field calling parent's reset().","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/LearnerClust.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Cluster Learner — LearnerClust","text":"","code":"LearnerClust$reset()"},{"path":"https://mlr3cluster.mlr-org.com/reference/LearnerClust.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Cluster Learner — LearnerClust","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/LearnerClust.html","id":"usage-2","dir":"Reference","previous_headings":"","what":"Usage","title":"Cluster Learner — LearnerClust","text":"","code":"LearnerClust$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/reference/LearnerClust.html","id":"arguments-1","dir":"Reference","previous_headings":"","what":"Arguments","title":"Cluster Learner — LearnerClust","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/LearnerClust.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Cluster Learner — LearnerClust","text":"","code":"library(mlr3) library(mlr3cluster) ids = mlr_learners$keys(\"^clust\") ids #> [1] \"clust.MBatchKMeans\" \"clust.SimpleKMeans\" \"clust.agnes\" #> [4] \"clust.ap\" \"clust.cmeans\" \"clust.cobweb\" #> [7] \"clust.dbscan\" \"clust.dbscan_fpc\" \"clust.diana\" #> [10] \"clust.em\" \"clust.fanny\" \"clust.featureless\" #> [13] \"clust.ff\" \"clust.hclust\" \"clust.kkmeans\" #> [16] \"clust.kmeans\" \"clust.mclust\" \"clust.meanshift\" #> [19] \"clust.pam\" \"clust.xmeans\" # get a specific learner from mlr_learners: lrn = mlr_learners$get(\"clust.kmeans\") print(lrn) #> : K-Means #> * Model: - #> * Parameters: centers=2 #> * Packages: mlr3, mlr3cluster, stats, clue #> * Predict Types: [partition] #> * Feature Types: logical, integer, numeric #> * Properties: complete, exclusive, partitional"},{"path":"https://mlr3cluster.mlr-org.com/reference/MeasureClust.html","id":null,"dir":"Reference","previous_headings":"","what":"Cluster Measure — MeasureClust","title":"Cluster Measure — MeasureClust","text":"measure specializes mlr3::Measure cluster analysis: task_type set \"clust\". Possible values predict_type \"partition\" \"prob\". Predefined measures can found mlr3misc::Dictionary mlr3::mlr_measures.","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/reference/MeasureClust.html","id":"super-class","dir":"Reference","previous_headings":"","what":"Super class","title":"Cluster Measure — MeasureClust","text":"mlr3::Measure -> MeasureClust","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/MeasureClust.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Cluster Measure — MeasureClust","text":"mlr3::Measure$aggregate() mlr3::Measure$format() mlr3::Measure$help() mlr3::Measure$print() mlr3::Measure$score()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/MeasureClust.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Cluster Measure — MeasureClust","text":"MeasureClust$new()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/MeasureClust.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Cluster Measure — MeasureClust","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/MeasureClust.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Cluster Measure — MeasureClust","text":"","code":"MeasureClust$new( id, range, minimize = NA, aggregator = NULL, properties = character(), predict_type = \"partition\", task_properties = character(), packages = character(), label = NA_character_, man = NA_character_ )"},{"path":"https://mlr3cluster.mlr-org.com/reference/MeasureClust.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Cluster Measure — MeasureClust","text":"id (character(1)) Identifier new instance. range (numeric(2)) Feasible range measure c(lower_bound, upper_bound). bounds may infinite. minimize (logical(1)) Set TRUE good predictions correspond small values, FALSE good predictions correspond large values. set NA (default), tuning measure possible. aggregator (function(x)) Function aggregate individual performance scores x x numeric vector. NULL, defaults mean(). properties (character()) Properties measure. Must subset mlr_reflections$measure_properties. Supported mlr3: \"requires_task\" (requires complete Task), \"requires_learner\" (requires trained Learner), \"requires_train_set\" (requires training indices Resampling), \"na_score\" (measure expected occasionally return NA NaN). predict_type (character(1)) Required predict type Learner. Possible values stored mlr_reflections$learner_predict_types. task_properties (character()) Required task properties, see Task. packages (character()) Set required packages. warning signaled constructor least one packages installed, loaded (attached) later -demand via requireNamespace(). label (character(1)) Label new instance. man (character(1)) String format [pkg]::[topic] pointing manual page object. referenced help package can opened via method $help().","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/PredictionClust.html","id":null,"dir":"Reference","previous_headings":"","what":"Prediction Object for Cluster Analysis — PredictionClust","title":"Prediction Object for Cluster Analysis — PredictionClust","text":"object wraps predictions returned learner class LearnerClust, .e. predicted partition cluster probability.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/PredictionClust.html","id":"super-class","dir":"Reference","previous_headings":"","what":"Super class","title":"Prediction Object for Cluster Analysis — PredictionClust","text":"mlr3::Prediction -> PredictionClust","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/PredictionClust.html","id":"active-bindings","dir":"Reference","previous_headings":"","what":"Active bindings","title":"Prediction Object for Cluster Analysis — PredictionClust","text":"partition (integer()) Access stored partition. prob (matrix()) Access stored probabilities.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/PredictionClust.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Prediction Object for Cluster Analysis — PredictionClust","text":"mlr3::Prediction$filter() mlr3::Prediction$format() mlr3::Prediction$help() mlr3::Prediction$print() mlr3::Prediction$score()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/PredictionClust.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Prediction Object for Cluster Analysis — PredictionClust","text":"PredictionClust$new() PredictionClust$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/PredictionClust.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Prediction Object for Cluster Analysis — PredictionClust","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/PredictionClust.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Prediction Object for Cluster Analysis — PredictionClust","text":"","code":"PredictionClust$new( task = NULL, row_ids = task$row_ids, partition = NULL, prob = NULL, check = TRUE )"},{"path":"https://mlr3cluster.mlr-org.com/reference/PredictionClust.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Prediction Object for Cluster Analysis — PredictionClust","text":"task (TaskClust) Task, used extract defaults row_ids. row_ids (integer()) Row ids predicted observations, .e. row ids test set. partition (integer()) Vector cluster partitions. prob (matrix()) Numeric matrix cluster membership probabilities one column cluster one row observation. Columns must named cluster numbers, row names automatically removed. prob provided, partition , cluster memberships calculated probabilities using max.col() ties.method set \"first\". check (logical(1)) TRUE, performs argument checks predict type conversions.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/PredictionClust.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Prediction Object for Cluster Analysis — PredictionClust","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/PredictionClust.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Prediction Object for Cluster Analysis — PredictionClust","text":"","code":"PredictionClust$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/reference/PredictionClust.html","id":"arguments-1","dir":"Reference","previous_headings":"","what":"Arguments","title":"Prediction Object for Cluster Analysis — PredictionClust","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/PredictionClust.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Prediction Object for Cluster Analysis — PredictionClust","text":"","code":"library(mlr3) library(mlr3cluster) task = tsk(\"usarrests\") learner = lrn(\"clust.kmeans\") p = learner$train(task)$predict(task) p$predict_types #> [1] \"partition\" head(as.data.table(p)) #> row_ids partition #> 1: 1 1 #> 2: 2 1 #> 3: 3 1 #> 4: 4 1 #> 5: 5 1 #> 6: 6 1"},{"path":"https://mlr3cluster.mlr-org.com/reference/TaskClust.html","id":null,"dir":"Reference","previous_headings":"","what":"Cluster Task — TaskClust","title":"Cluster Task — TaskClust","text":"task specializes mlr3::Task cluster problems. unsupervised task, task target column. task_type set \"clust\". Predefined tasks stored dictionary mlr_tasks.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/TaskClust.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Cluster Task — TaskClust","text":"mlr3::Task -> mlr3::TaskUnsupervised -> TaskClust","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/TaskClust.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Cluster Task — TaskClust","text":"mlr3::Task$add_strata() mlr3::Task$cbind() mlr3::Task$data() mlr3::Task$droplevels() mlr3::Task$filter() mlr3::Task$format() mlr3::Task$formula() mlr3::Task$head() mlr3::Task$help() mlr3::Task$levels() mlr3::Task$missings() mlr3::Task$print() mlr3::Task$rbind() mlr3::Task$rename() mlr3::Task$select() mlr3::Task$set_col_roles() mlr3::Task$set_levels() mlr3::Task$set_row_roles()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/TaskClust.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Cluster Task — TaskClust","text":"TaskClust$new() TaskClust$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/TaskClust.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Cluster Task — TaskClust","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/TaskClust.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Cluster Task — TaskClust","text":"","code":"TaskClust$new(id, backend, label = NA_character_)"},{"path":"https://mlr3cluster.mlr-org.com/reference/TaskClust.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Cluster Task — TaskClust","text":"id (character(1)) Identifier new instance. backend (DataBackend) Either DataBackend, object convertible DataBackend as_data_backend(). E.g., data.frame() converted DataBackendDataTable. label (character(1)) Label new instance.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/TaskClust.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Cluster Task — TaskClust","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/TaskClust.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Cluster Task — TaskClust","text":"","code":"TaskClust$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/reference/TaskClust.html","id":"arguments-1","dir":"Reference","previous_headings":"","what":"Arguments","title":"Cluster Task — TaskClust","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/TaskClust.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Cluster Task — TaskClust","text":"","code":"library(mlr3) library(mlr3cluster) task = TaskClust$new(\"usarrests\", backend = USArrests) task$task_type #> [1] \"clust\" # possible properties: mlr_reflections$task_properties$clust #> [1] \"strata\" \"groups\" \"weights\""},{"path":"https://mlr3cluster.mlr-org.com/reference/as_prediction_clust.html","id":null,"dir":"Reference","previous_headings":"","what":"Convert to a Cluster Prediction — as_prediction_clust","title":"Convert to a Cluster Prediction — as_prediction_clust","text":"Convert object PredictionClust.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/as_prediction_clust.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Convert to a Cluster Prediction — as_prediction_clust","text":"","code":"as_prediction_clust(x, ...) # S3 method for PredictionClust as_prediction_clust(x, ...) # S3 method for data.frame as_prediction_clust(x, ...)"},{"path":"https://mlr3cluster.mlr-org.com/reference/as_prediction_clust.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Convert to a Cluster Prediction — as_prediction_clust","text":"x () Object convert. ... () Additional arguments.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/as_prediction_clust.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Convert to a Cluster Prediction — as_prediction_clust","text":"PredictionClust.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/as_prediction_clust.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Convert to a Cluster Prediction — as_prediction_clust","text":"","code":"if (requireNamespace(\"e1071\")) { # create a prediction object task = tsk(\"usarrests\") learner = lrn(\"clust.kmeans\") learner = lrn(\"clust.cmeans\", predict_type = \"prob\") learner$train(task) p = learner$predict(task) # convert to a data.table tab = as.data.table(p) # convert back to a Prediction as_prediction_clust(tab) # split data.table into a 3 data.tables based on UrbanPop f = cut(task$data(rows = tab$row_ids)$UrbanPop, 3) tabs = split(tab, f) # convert back to list of predictions preds = lapply(tabs, as_prediction_clust) # calculate performance in each group sapply(preds, function(p) p$score(task = task)) } #> Loading required namespace: e1071 #> (31.9,51.7].clust.dunn (51.7,71.3].clust.dunn (71.3,91.1].clust.dunn #> 0.7096902 0.1226172 0.2538652"},{"path":"https://mlr3cluster.mlr-org.com/reference/as_task_clust.html","id":null,"dir":"Reference","previous_headings":"","what":"Convert to a Cluster Task — as_task_clust","title":"Convert to a Cluster Task — as_task_clust","text":"Convert object TaskClust. S3 generic, specialized least following objects: TaskClust: ensure identity. data.frame() DataBackend: provides alternative calling constructor TaskClust.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/as_task_clust.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Convert to a Cluster Task — as_task_clust","text":"","code":"as_task_clust(x, ...) # S3 method for TaskClust as_task_clust(x, clone = FALSE, ...) # S3 method for data.frame as_task_clust(x, id = deparse(substitute(x)), ...) # S3 method for DataBackend as_task_clust(x, id = deparse(substitute(x)), ...) # S3 method for formula as_task_clust(x, data, id = deparse(substitute(data)), ...)"},{"path":"https://mlr3cluster.mlr-org.com/reference/as_task_clust.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Convert to a Cluster Task — as_task_clust","text":"x () Object convert. ... () Additional arguments. clone (logical(1)) TRUE, ensures returned object input x. id (character(1)) Id new task. Defaults (deparsed substituted) name data argument. data (data.frame()) Data frame containing columns specified formula x.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/as_task_clust.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Convert to a Cluster Task — as_task_clust","text":"TaskClust.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/as_task_clust.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Convert to a Cluster Task — as_task_clust","text":"","code":"as_task_clust(datasets::USArrests) #> (50 x 4) #> * Target: - #> * Properties: - #> * Features (4): #> - int (2): Assault, UrbanPop #> - dbl (2): Murder, Rape"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr3cluster-package.html","id":null,"dir":"Reference","previous_headings":"","what":"mlr3cluster: Cluster Extension for 'mlr3' — mlr3cluster-package","title":"mlr3cluster: Cluster Extension for 'mlr3' — mlr3cluster-package","text":"Extends 'mlr3' package cluster analysis.","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr3cluster-package.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"mlr3cluster: Cluster Extension for 'mlr3' — mlr3cluster-package","text":"Maintainer: Damir Pulatov damirpolat@protonmail.com Authors: Michel Lang michellang@gmail.com (ORCID)","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.MBatchKMeans.html","id":null,"dir":"Reference","previous_headings":"","what":"Mini Batch K-Means Clustering Learner — mlr_learners_clust.MBatchKMeans","title":"Mini Batch K-Means Clustering Learner — mlr_learners_clust.MBatchKMeans","text":"LearnerClust mini batch k-means clustering implemented ClusterR::MiniBatchKmeans(). ClusterR::MiniBatchKmeans() default value number clusters. Therefore, clusters parameter set 2 default. predict method uses ClusterR::predict_MBatchKMeans() compute cluster memberships new data. learner supports partitional fuzzy clustering.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.MBatchKMeans.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"Mini Batch K-Means Clustering Learner — mlr_learners_clust.MBatchKMeans","text":"Learner can instantiated via dictionary mlr_learners associated sugar function lrn():","code":"mlr_learners$get(\"clust.MBatchKMeans\") lrn(\"clust.MBatchKMeans\")"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.MBatchKMeans.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Mini Batch K-Means Clustering Learner — mlr_learners_clust.MBatchKMeans","text":"Task type: “clust” Predict Types: “partition”, “prob” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, ClusterR","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.MBatchKMeans.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Mini Batch K-Means Clustering Learner — mlr_learners_clust.MBatchKMeans","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustMiniBatchKMeans","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.MBatchKMeans.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Mini Batch K-Means Clustering Learner — mlr_learners_clust.MBatchKMeans","text":"mlr3::Learner$base_learner() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.MBatchKMeans.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Mini Batch K-Means Clustering Learner — mlr_learners_clust.MBatchKMeans","text":"LearnerClustMiniBatchKMeans$new() LearnerClustMiniBatchKMeans$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.MBatchKMeans.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Mini Batch K-Means Clustering Learner — mlr_learners_clust.MBatchKMeans","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.MBatchKMeans.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Mini Batch K-Means Clustering Learner — mlr_learners_clust.MBatchKMeans","text":"","code":"LearnerClustMiniBatchKMeans$new()"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.MBatchKMeans.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Mini Batch K-Means Clustering Learner — mlr_learners_clust.MBatchKMeans","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.MBatchKMeans.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Mini Batch K-Means Clustering Learner — mlr_learners_clust.MBatchKMeans","text":"","code":"LearnerClustMiniBatchKMeans$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.MBatchKMeans.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Mini Batch K-Means Clustering Learner — mlr_learners_clust.MBatchKMeans","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.MBatchKMeans.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Mini Batch K-Means Clustering Learner — mlr_learners_clust.MBatchKMeans","text":"","code":"if (requireNamespace(\"ClusterR\")) { learner = mlr3::lrn(\"clust.MBatchKMeans\") print(learner) # available parameters: learner$param_set$ids() } #> : Mini Batch K-Means #> * Model: - #> * Parameters: clusters=2 #> * Packages: mlr3, mlr3cluster, ClusterR #> * Predict Types: [partition], prob #> * Feature Types: logical, integer, numeric #> * Properties: complete, exclusive, fuzzy, partitional #> [1] \"clusters\" \"batch_size\" \"num_init\" \"max_iters\" #> [5] \"init_fraction\" \"initializer\" \"early_stop_iter\" \"verbose\" #> [9] \"CENTROIDS\" \"tol\" \"tol_optimal_init\" \"seed\""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.SimpleKMeans.html","id":null,"dir":"Reference","previous_headings":"","what":"K-Means Clustering Learner from Weka — mlr_learners_clust.SimpleKMeans","title":"K-Means Clustering Learner from Weka — mlr_learners_clust.SimpleKMeans","text":"LearnerClust Simple K Means clustering implemented RWeka::SimpleKMeans(). predict method uses RWeka::predict.Weka_clusterer() compute cluster memberships new data.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.SimpleKMeans.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"K-Means Clustering Learner from Weka — mlr_learners_clust.SimpleKMeans","text":"Learner can instantiated via dictionary mlr_learners associated sugar function lrn():","code":"mlr_learners$get(\"clust.SimpleKMeans\") lrn(\"clust.SimpleKMeans\")"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.SimpleKMeans.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"K-Means Clustering Learner from Weka — mlr_learners_clust.SimpleKMeans","text":"Task type: “clust” Predict Types: “partition” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, RWeka","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.SimpleKMeans.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"K-Means Clustering Learner from Weka — mlr_learners_clust.SimpleKMeans","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustSimpleKMeans","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.SimpleKMeans.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"K-Means Clustering Learner from Weka — mlr_learners_clust.SimpleKMeans","text":"mlr3::Learner$base_learner() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.SimpleKMeans.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"K-Means Clustering Learner from Weka — mlr_learners_clust.SimpleKMeans","text":"LearnerClustSimpleKMeans$new() LearnerClustSimpleKMeans$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.SimpleKMeans.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"K-Means Clustering Learner from Weka — mlr_learners_clust.SimpleKMeans","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.SimpleKMeans.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"K-Means Clustering Learner from Weka — mlr_learners_clust.SimpleKMeans","text":"","code":"LearnerClustSimpleKMeans$new()"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.SimpleKMeans.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"K-Means Clustering Learner from Weka — mlr_learners_clust.SimpleKMeans","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.SimpleKMeans.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"K-Means Clustering Learner from Weka — mlr_learners_clust.SimpleKMeans","text":"","code":"LearnerClustSimpleKMeans$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.SimpleKMeans.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"K-Means Clustering Learner from Weka — mlr_learners_clust.SimpleKMeans","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.SimpleKMeans.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"K-Means Clustering Learner from Weka — mlr_learners_clust.SimpleKMeans","text":"","code":"if (FALSE) { if (requireNamespace(\"RWeka\")) { learner = mlr3::lrn(\"clust.SimpleKMeans\") print(learner) # available parameters: learner$param_set$ids() }}"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.agnes.html","id":null,"dir":"Reference","previous_headings":"","what":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.agnes","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.agnes","text":"LearnerClust agglomerative hierarchical clustering implemented cluster::agnes(). predict method uses stats::cutree() cuts tree resulting hierarchical clustering specified number groups (see parameter k). default number k 2.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.agnes.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.agnes","text":"Learner can instantiated via dictionary mlr_learners associated sugar function lrn():","code":"mlr_learners$get(\"clust.agnes\") lrn(\"clust.agnes\")"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.agnes.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.agnes","text":"Task type: “clust” Predict Types: “partition” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, cluster","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.agnes.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.agnes","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustAgnes","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.agnes.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.agnes","text":"mlr3::Learner$base_learner() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.agnes.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.agnes","text":"LearnerClustAgnes$new() LearnerClustAgnes$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.agnes.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.agnes","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.agnes.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.agnes","text":"","code":"LearnerClustAgnes$new()"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.agnes.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.agnes","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.agnes.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.agnes","text":"","code":"LearnerClustAgnes$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.agnes.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.agnes","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.agnes.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.agnes","text":"","code":"if (requireNamespace(\"cluster\")) { learner = mlr3::lrn(\"clust.agnes\") print(learner) # available parameters: learner$param_set$ids() } #> : Agglomerative Hierarchical Clustering #> * Model: - #> * Parameters: k=2 #> * Packages: mlr3, mlr3cluster, cluster #> * Predict Types: [partition] #> * Feature Types: logical, integer, numeric #> * Properties: complete, exclusive, hierarchical #> [1] \"metric\" \"stand\" \"method\" \"trace.lev\" \"k\" #> [6] \"par.method\""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.ap.html","id":null,"dir":"Reference","previous_headings":"","what":"Affinity Propagation Clustering Learner — mlr_learners_clust.ap","title":"Affinity Propagation Clustering Learner — mlr_learners_clust.ap","text":"LearnerClust Affinity Propagation clustering implemented apcluster::apcluster(). apcluster::apcluster() set default similarity function. Therefore, s parameter set apcluster::negDistMat(r = 2L) default since used original paper Affity Propagation clustering. predict method computes closest cluster exemplar find cluster memberships new data. code taken StackOverflow answer apcluster package maintainer.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.ap.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"Affinity Propagation Clustering Learner — mlr_learners_clust.ap","text":"Learner can instantiated via dictionary mlr_learners associated sugar function lrn():","code":"mlr_learners$get(\"clust.ap\") lrn(\"clust.ap\")"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.ap.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Affinity Propagation Clustering Learner — mlr_learners_clust.ap","text":"Task type: “clust” Predict Types: “partition” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, apcluster","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.ap.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Affinity Propagation Clustering Learner — mlr_learners_clust.ap","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustAP","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.ap.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Affinity Propagation Clustering Learner — mlr_learners_clust.ap","text":"mlr3::Learner$base_learner() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.ap.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Affinity Propagation Clustering Learner — mlr_learners_clust.ap","text":"LearnerClustAP$new() LearnerClustAP$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.ap.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Affinity Propagation Clustering Learner — mlr_learners_clust.ap","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.ap.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Affinity Propagation Clustering Learner — mlr_learners_clust.ap","text":"","code":"LearnerClustAP$new()"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.ap.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Affinity Propagation Clustering Learner — mlr_learners_clust.ap","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.ap.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Affinity Propagation Clustering Learner — mlr_learners_clust.ap","text":"","code":"LearnerClustAP$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.ap.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Affinity Propagation Clustering Learner — mlr_learners_clust.ap","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.ap.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Affinity Propagation Clustering Learner — mlr_learners_clust.ap","text":"","code":"if (requireNamespace(\"apcluster\")) { learner = mlr3::lrn(\"clust.ap\") print(learner) # available parameters: learner$param_set$ids() } #> : Affinity Propagation Clustering #> * Model: - #> * Parameters: s= #> * Packages: mlr3, mlr3cluster, apcluster #> * Predict Types: [partition] #> * Feature Types: logical, integer, numeric #> * Properties: complete, exclusive, partitional #> [1] \"s\" \"p\" \"q\" \"maxits\" \"convits\" #> [6] \"lam\" \"includeSim\" \"details\" \"nonoise\" \"seed\""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.cmeans.html","id":null,"dir":"Reference","previous_headings":"","what":"Fuzzy C-Means Clustering Learner — mlr_learners_clust.cmeans","title":"Fuzzy C-Means Clustering Learner — mlr_learners_clust.cmeans","text":"LearnerClust fuzzy clustering implemented e1071::cmeans(). e1071::cmeans() default value number clusters. Therefore, centers parameter set 2 default. predict method uses clue::cl_predict() compute cluster memberships new data.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.cmeans.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"Fuzzy C-Means Clustering Learner — mlr_learners_clust.cmeans","text":"Learner can instantiated via dictionary mlr_learners associated sugar function lrn():","code":"mlr_learners$get(\"clust.cmeans\") lrn(\"clust.cmeans\")"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.cmeans.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Fuzzy C-Means Clustering Learner — mlr_learners_clust.cmeans","text":"Task type: “clust” Predict Types: “partition”, “prob” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, e1071","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.cmeans.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Fuzzy C-Means Clustering Learner — mlr_learners_clust.cmeans","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustCMeans","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.cmeans.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Fuzzy C-Means Clustering Learner — mlr_learners_clust.cmeans","text":"mlr3::Learner$base_learner() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.cmeans.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Fuzzy C-Means Clustering Learner — mlr_learners_clust.cmeans","text":"LearnerClustCMeans$new() LearnerClustCMeans$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.cmeans.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Fuzzy C-Means Clustering Learner — mlr_learners_clust.cmeans","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.cmeans.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Fuzzy C-Means Clustering Learner — mlr_learners_clust.cmeans","text":"","code":"LearnerClustCMeans$new()"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.cmeans.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Fuzzy C-Means Clustering Learner — mlr_learners_clust.cmeans","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.cmeans.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Fuzzy C-Means Clustering Learner — mlr_learners_clust.cmeans","text":"","code":"LearnerClustCMeans$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.cmeans.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Fuzzy C-Means Clustering Learner — mlr_learners_clust.cmeans","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.cmeans.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Fuzzy C-Means Clustering Learner — mlr_learners_clust.cmeans","text":"","code":"if (requireNamespace(\"e1071\")) { learner = mlr3::lrn(\"clust.cmeans\") print(learner) # available parameters: learner$param_set$ids() } #> : Fuzzy C-Means Clustering Learner #> * Model: - #> * Parameters: centers=2 #> * Packages: mlr3, mlr3cluster, e1071 #> * Predict Types: [partition], prob #> * Feature Types: logical, integer, numeric #> * Properties: complete, fuzzy, partitional #> [1] \"centers\" \"iter.max\" \"verbose\" \"dist\" \"method\" \"m\" \"rate.par\" #> [8] \"weights\" \"control\""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.cobweb.html","id":null,"dir":"Reference","previous_headings":"","what":"Cobweb Clustering Learner — mlr_learners_clust.cobweb","title":"Cobweb Clustering Learner — mlr_learners_clust.cobweb","text":"LearnerClust Cobweb clustering implemented RWeka::Cobweb(). predict method uses RWeka::predict.Weka_clusterer() compute cluster memberships new data.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.cobweb.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"Cobweb Clustering Learner — mlr_learners_clust.cobweb","text":"Learner can instantiated via dictionary mlr_learners associated sugar function lrn():","code":"mlr_learners$get(\"clust.cobweb\") lrn(\"clust.cobweb\")"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.cobweb.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Cobweb Clustering Learner — mlr_learners_clust.cobweb","text":"Task type: “clust” Predict Types: “partition” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, RWeka","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.cobweb.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Cobweb Clustering Learner — mlr_learners_clust.cobweb","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustCobweb","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.cobweb.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Cobweb Clustering Learner — mlr_learners_clust.cobweb","text":"mlr3::Learner$base_learner() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.cobweb.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Cobweb Clustering Learner — mlr_learners_clust.cobweb","text":"LearnerClustCobweb$new() LearnerClustCobweb$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.cobweb.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Cobweb Clustering Learner — mlr_learners_clust.cobweb","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.cobweb.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Cobweb Clustering Learner — mlr_learners_clust.cobweb","text":"","code":"LearnerClustCobweb$new()"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.cobweb.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Cobweb Clustering Learner — mlr_learners_clust.cobweb","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.cobweb.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Cobweb Clustering Learner — mlr_learners_clust.cobweb","text":"","code":"LearnerClustCobweb$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.cobweb.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Cobweb Clustering Learner — mlr_learners_clust.cobweb","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.cobweb.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Cobweb Clustering Learner — mlr_learners_clust.cobweb","text":"","code":"if (requireNamespace(\"RWeka\")) { learner = mlr3::lrn(\"clust.cobweb\") print(learner) # available parameters: learner$param_set$ids() } #> : Cobweb Clustering #> * Model: - #> * Parameters: list() #> * Packages: mlr3, mlr3cluster, RWeka #> * Predict Types: [partition] #> * Feature Types: logical, integer, numeric #> * Properties: complete, exclusive, partitional #> [1] \"A\" \"C\" \"S\""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.dbscan.html","id":null,"dir":"Reference","previous_headings":"","what":"Density-Based Clustering Learner — mlr_learners_clust.dbscan","title":"Density-Based Clustering Learner — mlr_learners_clust.dbscan","text":"LearnerClust density-based clustering implemented dbscan::dbscan(). predict method uses dbscan::predict.dbscan_fast() compute cluster memberships new data.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.dbscan.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"Density-Based Clustering Learner — mlr_learners_clust.dbscan","text":"Learner can instantiated via dictionary mlr_learners associated sugar function lrn():","code":"mlr_learners$get(\"clust.dbscan\") lrn(\"clust.dbscan\")"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.dbscan.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Density-Based Clustering Learner — mlr_learners_clust.dbscan","text":"Task type: “clust” Predict Types: “partition” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, dbscan","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.dbscan.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Density-Based Clustering Learner — mlr_learners_clust.dbscan","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustDBSCAN","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.dbscan.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Density-Based Clustering Learner — mlr_learners_clust.dbscan","text":"mlr3::Learner$base_learner() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.dbscan.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Density-Based Clustering Learner — mlr_learners_clust.dbscan","text":"LearnerClustDBSCAN$new() LearnerClustDBSCAN$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.dbscan.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Density-Based Clustering Learner — mlr_learners_clust.dbscan","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.dbscan.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Density-Based Clustering Learner — mlr_learners_clust.dbscan","text":"","code":"LearnerClustDBSCAN$new()"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.dbscan.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Density-Based Clustering Learner — mlr_learners_clust.dbscan","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.dbscan.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Density-Based Clustering Learner — mlr_learners_clust.dbscan","text":"","code":"LearnerClustDBSCAN$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.dbscan.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Density-Based Clustering Learner — mlr_learners_clust.dbscan","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.dbscan.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Density-Based Clustering Learner — mlr_learners_clust.dbscan","text":"","code":"if (requireNamespace(\"dbscan\")) { learner = mlr3::lrn(\"clust.dbscan\") print(learner) # available parameters: learner$param_set$ids() } #> : Density-Based Clustering #> * Model: - #> * Parameters: list() #> * Packages: mlr3, mlr3cluster, dbscan #> * Predict Types: [partition] #> * Feature Types: logical, integer, numeric #> * Properties: complete, exclusive, partitional #> [1] \"eps\" \"minPts\" \"borderPoints\" \"weights\" \"search\" #> [6] \"bucketSize\" \"splitRule\" \"approx\""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.dbscan_fpc.html","id":null,"dir":"Reference","previous_headings":"","what":"Density-Based Clustering Learner with fpc — mlr_learners_clust.dbscan_fpc","title":"Density-Based Clustering Learner with fpc — mlr_learners_clust.dbscan_fpc","text":"LearnerClust density-based clustering implemented fpc::dbscan(). predict method uses fpc::predict.dbscan() compute cluster memberships new data.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.dbscan_fpc.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"Density-Based Clustering Learner with fpc — mlr_learners_clust.dbscan_fpc","text":"Learner can instantiated via dictionary mlr_learners associated sugar function lrn():","code":"mlr_learners$get(\"clust.dbscan_fpc\") lrn(\"clust.dbscan_fpc\")"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.dbscan_fpc.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Density-Based Clustering Learner with fpc — mlr_learners_clust.dbscan_fpc","text":"Task type: “clust” Predict Types: “partition” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, fpc","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.dbscan_fpc.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Density-Based Clustering Learner with fpc — mlr_learners_clust.dbscan_fpc","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustDBSCANfpc","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.dbscan_fpc.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Density-Based Clustering Learner with fpc — mlr_learners_clust.dbscan_fpc","text":"mlr3::Learner$base_learner() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.dbscan_fpc.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Density-Based Clustering Learner with fpc — mlr_learners_clust.dbscan_fpc","text":"LearnerClustDBSCANfpc$new() LearnerClustDBSCANfpc$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.dbscan_fpc.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Density-Based Clustering Learner with fpc — mlr_learners_clust.dbscan_fpc","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.dbscan_fpc.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Density-Based Clustering Learner with fpc — mlr_learners_clust.dbscan_fpc","text":"","code":"LearnerClustDBSCANfpc$new()"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.dbscan_fpc.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Density-Based Clustering Learner with fpc — mlr_learners_clust.dbscan_fpc","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.dbscan_fpc.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Density-Based Clustering Learner with fpc — mlr_learners_clust.dbscan_fpc","text":"","code":"LearnerClustDBSCANfpc$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.dbscan_fpc.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Density-Based Clustering Learner with fpc — mlr_learners_clust.dbscan_fpc","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.dbscan_fpc.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Density-Based Clustering Learner with fpc — mlr_learners_clust.dbscan_fpc","text":"","code":"if (requireNamespace(\"fpc\")) { learner = mlr3::lrn(\"clust.dbscan_fpc\") print(learner) # available parameters: learner$param_set$ids() } #> : Density-Based Clustering with fpc #> * Model: - #> * Parameters: MinPts=5, scale=FALSE, seeds=TRUE, showplot=FALSE #> * Packages: mlr3, mlr3cluster, fpc #> * Predict Types: [partition] #> * Feature Types: logical, integer, numeric #> * Properties: complete, exclusive, partitional #> [1] \"eps\" \"MinPts\" \"scale\" \"method\" \"seeds\" \"showplot\" #> [7] \"countmode\""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.diana.html","id":null,"dir":"Reference","previous_headings":"","what":"Divisive Hierarchical Clustering Learner — mlr_learners_clust.diana","title":"Divisive Hierarchical Clustering Learner — mlr_learners_clust.diana","text":"LearnerClust divisive hierarchical clustering implemented cluster::diana(). predict method uses stats::cutree() cuts tree resulting hierarchical clustering specified number groups (see parameter k). default value k 2.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.diana.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"Divisive Hierarchical Clustering Learner — mlr_learners_clust.diana","text":"Learner can instantiated via dictionary mlr_learners associated sugar function lrn():","code":"mlr_learners$get(\"clust.diana\") lrn(\"clust.diana\")"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.diana.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Divisive Hierarchical Clustering Learner — mlr_learners_clust.diana","text":"Task type: “clust” Predict Types: “partition” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, cluster","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.diana.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Divisive Hierarchical Clustering Learner — mlr_learners_clust.diana","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustDiana","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.diana.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Divisive Hierarchical Clustering Learner — mlr_learners_clust.diana","text":"mlr3::Learner$base_learner() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.diana.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Divisive Hierarchical Clustering Learner — mlr_learners_clust.diana","text":"LearnerClustDiana$new() LearnerClustDiana$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.diana.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Divisive Hierarchical Clustering Learner — mlr_learners_clust.diana","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.diana.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Divisive Hierarchical Clustering Learner — mlr_learners_clust.diana","text":"","code":"LearnerClustDiana$new()"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.diana.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Divisive Hierarchical Clustering Learner — mlr_learners_clust.diana","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.diana.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Divisive Hierarchical Clustering Learner — mlr_learners_clust.diana","text":"","code":"LearnerClustDiana$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.diana.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Divisive Hierarchical Clustering Learner — mlr_learners_clust.diana","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.diana.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Divisive Hierarchical Clustering Learner — mlr_learners_clust.diana","text":"","code":"if (requireNamespace(\"cluster\")) { learner = mlr3::lrn(\"clust.diana\") print(learner) # available parameters: learner$param_set$ids() } #> : Divisive Hierarchical Clustering #> * Model: - #> * Parameters: k=2 #> * Packages: mlr3, mlr3cluster, cluster #> * Predict Types: [partition] #> * Feature Types: logical, integer, numeric #> * Properties: complete, exclusive, hierarchical #> [1] \"metric\" \"stand\" \"trace.lev\" \"k\""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.em.html","id":null,"dir":"Reference","previous_headings":"","what":"Expectation-Maximization Clustering Learner — mlr_learners_clust.em","title":"Expectation-Maximization Clustering Learner — mlr_learners_clust.em","text":"LearnerClust Expectation-Maximization clustering implemented RWeka::list_Weka_interfaces(). predict method uses RWeka::predict.Weka_clusterer() compute cluster memberships new data.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.em.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"Expectation-Maximization Clustering Learner — mlr_learners_clust.em","text":"Learner can instantiated via dictionary mlr_learners associated sugar function lrn():","code":"mlr_learners$get(\"clust.em\") lrn(\"clust.em\")"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.em.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Expectation-Maximization Clustering Learner — mlr_learners_clust.em","text":"Task type: “clust” Predict Types: “partition” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, RWeka","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.em.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Expectation-Maximization Clustering Learner — mlr_learners_clust.em","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustEM","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.em.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Expectation-Maximization Clustering Learner — mlr_learners_clust.em","text":"mlr3::Learner$base_learner() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.em.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Expectation-Maximization Clustering Learner — mlr_learners_clust.em","text":"LearnerClustEM$new() LearnerClustEM$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.em.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Expectation-Maximization Clustering Learner — mlr_learners_clust.em","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.em.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Expectation-Maximization Clustering Learner — mlr_learners_clust.em","text":"","code":"LearnerClustEM$new()"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.em.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Expectation-Maximization Clustering Learner — mlr_learners_clust.em","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.em.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Expectation-Maximization Clustering Learner — mlr_learners_clust.em","text":"","code":"LearnerClustEM$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.em.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Expectation-Maximization Clustering Learner — mlr_learners_clust.em","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.em.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Expectation-Maximization Clustering Learner — mlr_learners_clust.em","text":"","code":"if (requireNamespace(\"RWeka\")) { learner = mlr3::lrn(\"clust.em\") print(learner) # available parameters: learner$param_set$ids() } #> : Expectation-Maximization Clustering #> * Model: - #> * Parameters: list() #> * Packages: mlr3, mlr3cluster, RWeka #> * Predict Types: [partition] #> * Feature Types: logical, integer, numeric #> * Properties: complete, exclusive, partitional #> [1] \"I\" \"ll_cv\" \"ll_iter\" #> [4] \"M\" \"max\" \"N\" #> [7] \"num_slots\" \"S\" \"X\" #> [10] \"K\" \"V\" \"output_debug_info\""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.fanny.html","id":null,"dir":"Reference","previous_headings":"","what":"Fuzzy Analysis Clustering Learner — mlr_learners_clust.fanny","title":"Fuzzy Analysis Clustering Learner — mlr_learners_clust.fanny","text":"LearnerClust fuzzy clustering implemented cluster::fanny(). cluster::fanny() default value number clusters. Therefore, k parameter corresponds number clusters set 2 default. predict method copies cluster assignments memberships generated train data. predict work new data.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.fanny.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"Fuzzy Analysis Clustering Learner — mlr_learners_clust.fanny","text":"Learner can instantiated via dictionary mlr_learners associated sugar function lrn():","code":"mlr_learners$get(\"clust.fanny\") lrn(\"clust.fanny\")"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.fanny.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Fuzzy Analysis Clustering Learner — mlr_learners_clust.fanny","text":"Task type: “clust” Predict Types: “partition”, “prob” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, cluster","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.fanny.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Fuzzy Analysis Clustering Learner — mlr_learners_clust.fanny","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustFanny","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.fanny.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Fuzzy Analysis Clustering Learner — mlr_learners_clust.fanny","text":"mlr3::Learner$base_learner() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.fanny.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Fuzzy Analysis Clustering Learner — mlr_learners_clust.fanny","text":"LearnerClustFanny$new() LearnerClustFanny$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.fanny.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Fuzzy Analysis Clustering Learner — mlr_learners_clust.fanny","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.fanny.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Fuzzy Analysis Clustering Learner — mlr_learners_clust.fanny","text":"","code":"LearnerClustFanny$new()"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.fanny.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Fuzzy Analysis Clustering Learner — mlr_learners_clust.fanny","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.fanny.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Fuzzy Analysis Clustering Learner — mlr_learners_clust.fanny","text":"","code":"LearnerClustFanny$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.fanny.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Fuzzy Analysis Clustering Learner — mlr_learners_clust.fanny","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.fanny.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Fuzzy Analysis Clustering Learner — mlr_learners_clust.fanny","text":"","code":"if (requireNamespace(\"cluster\")) { learner = mlr3::lrn(\"clust.fanny\") print(learner) # available parameters: learner$param_set$ids() } #> : Fuzzy Analysis Clustering #> * Model: - #> * Parameters: k=2 #> * Packages: mlr3, mlr3cluster, cluster #> * Predict Types: [partition], prob #> * Feature Types: logical, integer, numeric #> * Properties: complete, fuzzy, partitional #> [1] \"k\" \"memb.exp\" \"metric\" \"stand\" \"maxit\" \"tol\" #> [7] \"trace.lev\""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.featureless.html","id":null,"dir":"Reference","previous_headings":"","what":"Featureless Clustering Learner — mlr_learners_clust.featureless","title":"Featureless Clustering Learner — mlr_learners_clust.featureless","text":"simple LearnerClust randomly (evenly) assigns observations num_clusters partitions (default: 1 partition).","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.featureless.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"Featureless Clustering Learner — mlr_learners_clust.featureless","text":"Learner can instantiated via dictionary mlr_learners associated sugar function lrn():","code":"mlr_learners$get(\"clust.featureless\") lrn(\"clust.featureless\")"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.featureless.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Featureless Clustering Learner — mlr_learners_clust.featureless","text":"Task type: “clust” Predict Types: “partition”, “prob” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.featureless.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Featureless Clustering Learner — mlr_learners_clust.featureless","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustFeatureless","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.featureless.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Featureless Clustering Learner — mlr_learners_clust.featureless","text":"mlr3::Learner$base_learner() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.featureless.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Featureless Clustering Learner — mlr_learners_clust.featureless","text":"LearnerClustFeatureless$new() LearnerClustFeatureless$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.featureless.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Featureless Clustering Learner — mlr_learners_clust.featureless","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.featureless.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Featureless Clustering Learner — mlr_learners_clust.featureless","text":"","code":"LearnerClustFeatureless$new()"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.featureless.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Featureless Clustering Learner — mlr_learners_clust.featureless","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.featureless.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Featureless Clustering Learner — mlr_learners_clust.featureless","text":"","code":"LearnerClustFeatureless$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.featureless.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Featureless Clustering Learner — mlr_learners_clust.featureless","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.featureless.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Featureless Clustering Learner — mlr_learners_clust.featureless","text":"","code":"if (requireNamespace(\"mlr3\")) { learner = mlr3::lrn(\"clust.featureless\") print(learner) # available parameters: learner$param_set$ids() } #> : Featureless Clustering #> * Model: - #> * Parameters: num_clusters=1 #> * Packages: mlr3, mlr3cluster #> * Predict Types: [partition], prob #> * Feature Types: logical, integer, numeric #> * Properties: complete, exclusive, missings, partitional #> [1] \"num_clusters\""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.ff.html","id":null,"dir":"Reference","previous_headings":"","what":"Farthest First Clustering Learner — mlr_learners_clust.ff","title":"Farthest First Clustering Learner — mlr_learners_clust.ff","text":"LearnerClust Farthest First clustering implemented RWeka::FarthestFirst(). predict method uses RWeka::predict.Weka_clusterer() compute cluster memberships new data.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.ff.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"Farthest First Clustering Learner — mlr_learners_clust.ff","text":"Learner can instantiated via dictionary mlr_learners associated sugar function lrn():","code":"mlr_learners$get(\"clust.ff\") lrn(\"clust.ff\")"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.ff.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Farthest First Clustering Learner — mlr_learners_clust.ff","text":"Task type: “clust” Predict Types: “partition” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, RWeka","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.ff.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Farthest First Clustering Learner — mlr_learners_clust.ff","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustFF","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.ff.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Farthest First Clustering Learner — mlr_learners_clust.ff","text":"mlr3::Learner$base_learner() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.ff.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Farthest First Clustering Learner — mlr_learners_clust.ff","text":"LearnerClustFarthestFirst$new() LearnerClustFarthestFirst$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.ff.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Farthest First Clustering Learner — mlr_learners_clust.ff","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.ff.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Farthest First Clustering Learner — mlr_learners_clust.ff","text":"","code":"LearnerClustFarthestFirst$new()"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.ff.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Farthest First Clustering Learner — mlr_learners_clust.ff","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.ff.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Farthest First Clustering Learner — mlr_learners_clust.ff","text":"","code":"LearnerClustFarthestFirst$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.ff.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Farthest First Clustering Learner — mlr_learners_clust.ff","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.ff.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Farthest First Clustering Learner — mlr_learners_clust.ff","text":"","code":"if (FALSE) { if (requireNamespace(\"RWeka\")) { learner = mlr3::lrn(\"clust.ff\") print(learner) # available parameters: learner$param_set$ids() }}"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.hclust.html","id":null,"dir":"Reference","previous_headings":"","what":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.hclust","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.hclust","text":"LearnerClust agglomerative hierarchical clustering implemented stats::hclust(). Difference Calculation done stats::dist()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.hclust.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.hclust","text":"Learner can instantiated via dictionary mlr_learners associated sugar function lrn():","code":"mlr_learners$get(\"clust.hclust\") lrn(\"clust.hclust\")"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.hclust.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.hclust","text":"Task type: “clust” Predict Types: “partition” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, 'stats'","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.hclust.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.hclust","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustHclust","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.hclust.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.hclust","text":"mlr3::Learner$base_learner() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.hclust.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.hclust","text":"LearnerClustHclust$new() LearnerClustHclust$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.hclust.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.hclust","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.hclust.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.hclust","text":"","code":"LearnerClustHclust$new()"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.hclust.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.hclust","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.hclust.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.hclust","text":"","code":"LearnerClustHclust$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.hclust.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.hclust","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.hclust.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.hclust","text":"","code":"if (requireNamespace(\"stats\")) { learner = mlr3::lrn(\"clust.hclust\") print(learner) # available parameters: learner$param_set$ids() } #> : Agglomerative Hierarchical Clustering #> * Model: - #> * Parameters: k=2, distmethod=euclidean #> * Packages: mlr3, mlr3cluster, stats #> * Predict Types: [partition] #> * Feature Types: logical, integer, numeric #> * Properties: complete, exclusive, hierarchical #> [1] \"method\" \"members\" \"distmethod\" \"diag\" \"upper\" #> [6] \"p\" \"k\""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.kkmeans.html","id":null,"dir":"Reference","previous_headings":"","what":"Kernel K-Means Clustering Learner — mlr_learners_clust.kkmeans","title":"Kernel K-Means Clustering Learner — mlr_learners_clust.kkmeans","text":"LearnerClust kernel k-means clustering implemented kernlab::kkmeans(). kernlab::kkmeans() default value number clusters. Therefore, centers parameter set 2 default. Kernel parameters passed directly using kpar list kkmeans. predict method finds nearest center kernel distance assign clusters new data points.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.kkmeans.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"Kernel K-Means Clustering Learner — mlr_learners_clust.kkmeans","text":"Learner can instantiated via dictionary mlr_learners associated sugar function lrn():","code":"mlr_learners$get(\"clust.kkmeans\") lrn(\"clust.kkmeans\")"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.kkmeans.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Kernel K-Means Clustering Learner — mlr_learners_clust.kkmeans","text":"Task type: “clust” Predict Types: “partition” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, kernlab","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.kkmeans.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Kernel K-Means Clustering Learner — mlr_learners_clust.kkmeans","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustKKMeans","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.kkmeans.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Kernel K-Means Clustering Learner — mlr_learners_clust.kkmeans","text":"mlr3::Learner$base_learner() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.kkmeans.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Kernel K-Means Clustering Learner — mlr_learners_clust.kkmeans","text":"LearnerClustKKMeans$new() LearnerClustKKMeans$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.kkmeans.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Kernel K-Means Clustering Learner — mlr_learners_clust.kkmeans","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.kkmeans.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Kernel K-Means Clustering Learner — mlr_learners_clust.kkmeans","text":"","code":"LearnerClustKKMeans$new()"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.kkmeans.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Kernel K-Means Clustering Learner — mlr_learners_clust.kkmeans","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.kkmeans.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Kernel K-Means Clustering Learner — mlr_learners_clust.kkmeans","text":"","code":"LearnerClustKKMeans$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.kkmeans.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Kernel K-Means Clustering Learner — mlr_learners_clust.kkmeans","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.kkmeans.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Kernel K-Means Clustering Learner — mlr_learners_clust.kkmeans","text":"","code":"if (requireNamespace(\"kernlab\")) { learner = mlr3::lrn(\"clust.kkmeans\") print(learner) # available parameters: learner$param_set$ids() } #> : Kernel K-Means #> * Model: - #> * Parameters: centers=2 #> * Packages: mlr3, mlr3cluster, kernlab #> * Predict Types: [partition] #> * Feature Types: logical, integer, numeric #> * Properties: complete, exclusive, partitional #> [1] \"centers\" \"kernel\" \"sigma\" \"degree\" \"scale\" \"offset\" \"order\" #> [8] \"alg\" \"p\""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.kmeans.html","id":null,"dir":"Reference","previous_headings":"","what":"K-Means Clustering Learner — mlr_learners_clust.kmeans","title":"K-Means Clustering Learner — mlr_learners_clust.kmeans","text":"LearnerClust k-means clustering implemented stats::kmeans(). stats::kmeans() default value number clusters. Therefore, centers parameter set 2 default. predict method uses clue::cl_predict() compute cluster memberships new data.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.kmeans.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"K-Means Clustering Learner — mlr_learners_clust.kmeans","text":"Learner can instantiated via dictionary mlr_learners associated sugar function lrn():","code":"mlr_learners$get(\"clust.kmeans\") lrn(\"clust.kmeans\")"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.kmeans.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"K-Means Clustering Learner — mlr_learners_clust.kmeans","text":"Task type: “clust” Predict Types: “partition” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, 'stats', clue","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.kmeans.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"K-Means Clustering Learner — mlr_learners_clust.kmeans","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustKMeans","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.kmeans.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"K-Means Clustering Learner — mlr_learners_clust.kmeans","text":"mlr3::Learner$base_learner() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.kmeans.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"K-Means Clustering Learner — mlr_learners_clust.kmeans","text":"LearnerClustKMeans$new() LearnerClustKMeans$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.kmeans.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"K-Means Clustering Learner — mlr_learners_clust.kmeans","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.kmeans.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"K-Means Clustering Learner — mlr_learners_clust.kmeans","text":"","code":"LearnerClustKMeans$new()"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.kmeans.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"K-Means Clustering Learner — mlr_learners_clust.kmeans","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.kmeans.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"K-Means Clustering Learner — mlr_learners_clust.kmeans","text":"","code":"LearnerClustKMeans$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.kmeans.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"K-Means Clustering Learner — mlr_learners_clust.kmeans","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.kmeans.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"K-Means Clustering Learner — mlr_learners_clust.kmeans","text":"","code":"if (requireNamespace(\"stats\") && requireNamespace(\"clue\")) { learner = mlr3::lrn(\"clust.kmeans\") print(learner) # available parameters: learner$param_set$ids() } #> : K-Means #> * Model: - #> * Parameters: centers=2 #> * Packages: mlr3, mlr3cluster, stats, clue #> * Predict Types: [partition] #> * Feature Types: logical, integer, numeric #> * Properties: complete, exclusive, partitional #> [1] \"centers\" \"iter.max\" \"algorithm\" \"nstart\" \"trace\""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.mclust.html","id":null,"dir":"Reference","previous_headings":"","what":"Gaussian Mixture Models-Based Clustering Learner — mlr_learners_clust.mclust","title":"Gaussian Mixture Models-Based Clustering Learner — mlr_learners_clust.mclust","text":"LearnerClust model-based clustering implemented mclust::Mclust(). predict method uses mclust::predict.Mclust() compute cluster memberships new data.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.mclust.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"Gaussian Mixture Models-Based Clustering Learner — mlr_learners_clust.mclust","text":"Learner can instantiated via dictionary mlr_learners associated sugar function lrn():","code":"mlr_learners$get(\"clust.mclust\") lrn(\"clust.mclust\")"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.mclust.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Gaussian Mixture Models-Based Clustering Learner — mlr_learners_clust.mclust","text":"Task type: “clust” Predict Types: “partition”, “prob” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, mclust","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.mclust.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Gaussian Mixture Models-Based Clustering Learner — mlr_learners_clust.mclust","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustMclust","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.mclust.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Gaussian Mixture Models-Based Clustering Learner — mlr_learners_clust.mclust","text":"mlr3::Learner$base_learner() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.mclust.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Gaussian Mixture Models-Based Clustering Learner — mlr_learners_clust.mclust","text":"LearnerClustMclust$new() LearnerClustMclust$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.mclust.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Gaussian Mixture Models-Based Clustering Learner — mlr_learners_clust.mclust","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.mclust.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Gaussian Mixture Models-Based Clustering Learner — mlr_learners_clust.mclust","text":"","code":"LearnerClustMclust$new()"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.mclust.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Gaussian Mixture Models-Based Clustering Learner — mlr_learners_clust.mclust","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.mclust.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Gaussian Mixture Models-Based Clustering Learner — mlr_learners_clust.mclust","text":"","code":"LearnerClustMclust$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.mclust.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Gaussian Mixture Models-Based Clustering Learner — mlr_learners_clust.mclust","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.mclust.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Gaussian Mixture Models-Based Clustering Learner — mlr_learners_clust.mclust","text":"","code":"if (requireNamespace(\"mclust\")) { learner = mlr3::lrn(\"clust.mclust\") print(learner) # available parameters: learner$param_set$ids() } #> : Gaussian Mixture Models Clustering #> * Model: - #> * Parameters: list() #> * Packages: mlr3, mlr3cluster, mclust #> * Predict Types: [partition], prob #> * Feature Types: logical, integer, numeric #> * Properties: complete, fuzzy, partitional #> [1] \"G\" \"modelNames\" \"prior\" \"control\" #> [5] \"initialization\" \"x\""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.meanshift.html","id":null,"dir":"Reference","previous_headings":"","what":"Mean Shift Clustering Learner — mlr_learners_clust.meanshift","title":"Mean Shift Clustering Learner — mlr_learners_clust.meanshift","text":"LearnerClust Mean Shift clustering implemented LPCM::ms(). predict method LPCM::ms(), method returns cluster labels 'training' data.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.meanshift.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"Mean Shift Clustering Learner — mlr_learners_clust.meanshift","text":"Learner can instantiated via dictionary mlr_learners associated sugar function lrn():","code":"mlr_learners$get(\"clust.meanshift\") lrn(\"clust.meanshift\")"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.meanshift.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Mean Shift Clustering Learner — mlr_learners_clust.meanshift","text":"Task type: “clust” Predict Types: “partition” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, LPCM","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.meanshift.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Mean Shift Clustering Learner — mlr_learners_clust.meanshift","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustMeanShift","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.meanshift.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Mean Shift Clustering Learner — mlr_learners_clust.meanshift","text":"mlr3::Learner$base_learner() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.meanshift.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Mean Shift Clustering Learner — mlr_learners_clust.meanshift","text":"LearnerClustMeanShift$new() LearnerClustMeanShift$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.meanshift.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Mean Shift Clustering Learner — mlr_learners_clust.meanshift","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.meanshift.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Mean Shift Clustering Learner — mlr_learners_clust.meanshift","text":"","code":"LearnerClustMeanShift$new()"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.meanshift.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Mean Shift Clustering Learner — mlr_learners_clust.meanshift","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.meanshift.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Mean Shift Clustering Learner — mlr_learners_clust.meanshift","text":"","code":"LearnerClustMeanShift$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.meanshift.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Mean Shift Clustering Learner — mlr_learners_clust.meanshift","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.meanshift.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Mean Shift Clustering Learner — mlr_learners_clust.meanshift","text":"","code":"if (requireNamespace(\"LPCM\")) { learner = mlr3::lrn(\"clust.meanshift\") print(learner) # available parameters: learner$param_set$ids() } #> : Mean Shift Clustering #> * Model: - #> * Parameters: list() #> * Packages: mlr3, mlr3cluster, LPCM #> * Predict Types: [partition] #> * Feature Types: logical, integer, numeric #> * Properties: complete, exclusive, partitional #> [1] \"h\" \"subset\" \"scaled\" \"iter\" \"thr\""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.pam.html","id":null,"dir":"Reference","previous_headings":"","what":"Partitioning Around Medoids Clustering Learner — mlr_learners_clust.pam","title":"Partitioning Around Medoids Clustering Learner — mlr_learners_clust.pam","text":"LearnerClust PAM clustering implemented cluster::pam(). cluster::pam() default value number clusters. Therefore, k parameter corresponds number clusters set 2 default. predict method uses clue::cl_predict() compute cluster memberships new data.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.pam.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"Partitioning Around Medoids Clustering Learner — mlr_learners_clust.pam","text":"Learner can instantiated via dictionary mlr_learners associated sugar function lrn():","code":"mlr_learners$get(\"clust.pam\") lrn(\"clust.pam\")"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.pam.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Partitioning Around Medoids Clustering Learner — mlr_learners_clust.pam","text":"Task type: “clust” Predict Types: “partition” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, cluster","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.pam.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Partitioning Around Medoids Clustering Learner — mlr_learners_clust.pam","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustPAM","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.pam.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Partitioning Around Medoids Clustering Learner — mlr_learners_clust.pam","text":"mlr3::Learner$base_learner() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.pam.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Partitioning Around Medoids Clustering Learner — mlr_learners_clust.pam","text":"LearnerClustPAM$new() LearnerClustPAM$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.pam.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Partitioning Around Medoids Clustering Learner — mlr_learners_clust.pam","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.pam.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Partitioning Around Medoids Clustering Learner — mlr_learners_clust.pam","text":"","code":"LearnerClustPAM$new()"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.pam.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Partitioning Around Medoids Clustering Learner — mlr_learners_clust.pam","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.pam.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Partitioning Around Medoids Clustering Learner — mlr_learners_clust.pam","text":"","code":"LearnerClustPAM$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.pam.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Partitioning Around Medoids Clustering Learner — mlr_learners_clust.pam","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.pam.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Partitioning Around Medoids Clustering Learner — mlr_learners_clust.pam","text":"","code":"if (requireNamespace(\"cluster\")) { learner = mlr3::lrn(\"clust.pam\") print(learner) # available parameters: learner$param_set$ids() } #> : Partitioning Around Medoids #> * Model: - #> * Parameters: k=2 #> * Packages: mlr3, mlr3cluster, cluster #> * Predict Types: [partition] #> * Feature Types: logical, integer, numeric #> * Properties: complete, exclusive, partitional #> [1] \"k\" \"metric\" \"medoids\" \"stand\" \"do.swap\" \"pamonce\" #> [7] \"trace.lev\""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.xmeans.html","id":null,"dir":"Reference","previous_headings":"","what":"X-means Clustering Learner — mlr_learners_clust.xmeans","title":"X-means Clustering Learner — mlr_learners_clust.xmeans","text":"LearnerClust X-means clustering implemented RWeka::XMeans(). predict method uses RWeka::predict.Weka_clusterer() compute cluster memberships new data.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.xmeans.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"X-means Clustering Learner — mlr_learners_clust.xmeans","text":"Learner can instantiated via dictionary mlr_learners associated sugar function lrn():","code":"mlr_learners$get(\"clust.xmeans\") lrn(\"clust.xmeans\")"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.xmeans.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"X-means Clustering Learner — mlr_learners_clust.xmeans","text":"Task type: “clust” Predict Types: “partition” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, RWeka","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.xmeans.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"X-means Clustering Learner — mlr_learners_clust.xmeans","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustXMeans","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.xmeans.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"X-means Clustering Learner — mlr_learners_clust.xmeans","text":"mlr3::Learner$base_learner() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.xmeans.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"X-means Clustering Learner — mlr_learners_clust.xmeans","text":"LearnerClustXMeans$new() LearnerClustXMeans$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.xmeans.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"X-means Clustering Learner — mlr_learners_clust.xmeans","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.xmeans.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"X-means Clustering Learner — mlr_learners_clust.xmeans","text":"","code":"LearnerClustXMeans$new()"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.xmeans.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"X-means Clustering Learner — mlr_learners_clust.xmeans","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.xmeans.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"X-means Clustering Learner — mlr_learners_clust.xmeans","text":"","code":"LearnerClustXMeans$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.xmeans.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"X-means Clustering Learner — mlr_learners_clust.xmeans","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.xmeans.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"X-means Clustering Learner — mlr_learners_clust.xmeans","text":"","code":"if (requireNamespace(\"RWeka\")) { learner = mlr3::lrn(\"clust.xmeans\") print(learner) # available parameters: learner$param_set$ids() } #> : X-means #> * Model: - #> * Parameters: list() #> * Packages: mlr3, mlr3cluster, RWeka #> * Predict Types: [partition] #> * Feature Types: logical, integer, numeric #> * Properties: complete, exclusive, partitional #> [1] \"B\" \"C\" \"D\" #> [4] \"H\" \"I\" \"J\" #> [7] \"K\" \"L\" \"M\" #> [10] \"S\" \"U\" \"use_kdtree\" #> [13] \"N\" \"O\" \"Y\" #> [16] \"output_debug_info\""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_measures_clust.ch.html","id":null,"dir":"Reference","previous_headings":"","what":"Calinski Harabasz Pseudo F-Statistic — mlr_measures_clust.ch","title":"Calinski Harabasz Pseudo F-Statistic — mlr_measures_clust.ch","text":"score function calls fpc::cluster.stats() package fpc. \"ch\" used subset output function call.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_measures_clust.ch.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Calinski Harabasz Pseudo F-Statistic — mlr_measures_clust.ch","text":"R6::R6Class() inheriting MeasureClust.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_measures_clust.ch.html","id":"construction","dir":"Reference","previous_headings":"","what":"Construction","title":"Calinski Harabasz Pseudo F-Statistic — mlr_measures_clust.ch","text":"measures can retrieved dictionary mlr_measures:","code":"mlr_measures$get(\"clust.ch\") msr(\"clust.ch\")"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_measures_clust.ch.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Calinski Harabasz Pseudo F-Statistic — mlr_measures_clust.ch","text":"Range: \\([0, \\infty)\\) Minimize: FALSE Required predict type: partition","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_measures_clust.dunn.html","id":null,"dir":"Reference","previous_headings":"","what":"Dunn Index — mlr_measures_clust.dunn","title":"Dunn Index — mlr_measures_clust.dunn","text":"score function calls fpc::cluster.stats() package fpc. \"dunn\" used subset output function call.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_measures_clust.dunn.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Dunn Index — mlr_measures_clust.dunn","text":"R6::R6Class() inheriting MeasureClust.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_measures_clust.dunn.html","id":"construction","dir":"Reference","previous_headings":"","what":"Construction","title":"Dunn Index — mlr_measures_clust.dunn","text":"measures can retrieved dictionary mlr_measures:","code":"mlr_measures$get(\"clust.dunn\") msr(\"clust.dunn\")"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_measures_clust.dunn.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Dunn Index — mlr_measures_clust.dunn","text":"Range: \\([0, \\infty)\\) Minimize: FALSE Required predict type: partition","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_measures_clust.silhouette.html","id":null,"dir":"Reference","previous_headings":"","what":"Rousseeuw's Silhouette Quality Index — mlr_measures_clust.silhouette","title":"Rousseeuw's Silhouette Quality Index — mlr_measures_clust.silhouette","text":"score function calls cluster::silhouette() package cluster. \"sil_width\" used subset output function call.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_measures_clust.silhouette.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Rousseeuw's Silhouette Quality Index — mlr_measures_clust.silhouette","text":"R6::R6Class() inheriting MeasureClust.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_measures_clust.silhouette.html","id":"construction","dir":"Reference","previous_headings":"","what":"Construction","title":"Rousseeuw's Silhouette Quality Index — mlr_measures_clust.silhouette","text":"measures can retrieved dictionary mlr_measures:","code":"mlr_measures$get(\"clust.silhouette\") msr(\"clust.silhouette\")"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_measures_clust.silhouette.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Rousseeuw's Silhouette Quality Index — mlr_measures_clust.silhouette","text":"Range: \\([0, \\infty)\\) Minimize: FALSE Required predict type: partition","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_measures_clust.wss.html","id":null,"dir":"Reference","previous_headings":"","what":"Within Sum of Squares — mlr_measures_clust.wss","title":"Within Sum of Squares — mlr_measures_clust.wss","text":"score function calls fpc::cluster.stats() package fpc. \"within.cluster.ss\" used subset output function call.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_measures_clust.wss.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Within Sum of Squares — mlr_measures_clust.wss","text":"R6::R6Class() inheriting MeasureClust.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_measures_clust.wss.html","id":"construction","dir":"Reference","previous_headings":"","what":"Construction","title":"Within Sum of Squares — mlr_measures_clust.wss","text":"measures can retrieved dictionary mlr_measures:","code":"mlr_measures$get(\"clust.wss\") msr(\"clust.wss\")"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_measures_clust.wss.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Within Sum of Squares — mlr_measures_clust.wss","text":"Range: \\([0, \\infty)\\) Minimize: TRUE Required predict type: partition","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_tasks_ruspini.html","id":null,"dir":"Reference","previous_headings":"","what":"Ruspini Cluster Task — mlr_tasks_ruspini","title":"Ruspini Cluster Task — mlr_tasks_ruspini","text":"cluster task cluster::ruspini data set.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_tasks_ruspini.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Ruspini Cluster Task — mlr_tasks_ruspini","text":"R6::R6Class inheriting TaskClust.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_tasks_ruspini.html","id":"source","dir":"Reference","previous_headings":"","what":"Source","title":"Ruspini Cluster Task — mlr_tasks_ruspini","text":"Ruspini EH (1970). “Numerical methods fuzzy clustering.” Information Sciences, 2(3), 319-350. doi:10.1016/S0020-0255(70)80056-1 .","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_tasks_ruspini.html","id":"construction","dir":"Reference","previous_headings":"","what":"Construction","title":"Ruspini Cluster Task — mlr_tasks_ruspini","text":"","code":"mlr_tasks$get(\"ruspini\") tsk(\"ruspini\")"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_tasks_usarrests.html","id":null,"dir":"Reference","previous_headings":"","what":"US Arrests Cluster Task — mlr_tasks_usarrests","title":"US Arrests Cluster Task — mlr_tasks_usarrests","text":"cluster task datasets::USArrests data set. Rownames stored variable \"states\" column role \"name\".","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_tasks_usarrests.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"US Arrests Cluster Task — mlr_tasks_usarrests","text":"R6::R6Class inheriting TaskClust.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_tasks_usarrests.html","id":"construction","dir":"Reference","previous_headings":"","what":"Construction","title":"US Arrests Cluster Task — mlr_tasks_usarrests","text":"","code":"mlr_tasks$get(\"usarrests\") tsk(\"usarrests\")"},{"path":"https://mlr3cluster.mlr-org.com/news/index.html","id":"mlr3cluster-development-version","dir":"Changelog","previous_headings":"","what":"mlr3cluster (development version)","title":"mlr3cluster (development version)","text":"Add DBSCAN learner ‘fpc’ package","code":""},{"path":"https://mlr3cluster.mlr-org.com/news/index.html","id":"mlr3cluster-018","dir":"Changelog","previous_headings":"","what":"mlr3cluster 0.1.8","title":"mlr3cluster 0.1.8","text":"CRAN release: 2023-03-12 Add new task based ruspini dataset","code":""},{"path":"https://mlr3cluster.mlr-org.com/news/index.html","id":"mlr3cluster-017","dir":"Changelog","previous_headings":"","what":"mlr3cluster 0.1.7","title":"mlr3cluster 0.1.7","text":"CRAN release: 2023-03-10 Replace ‘clusterCrit’ measures alternatives ‘cluster’ ‘fpc’ packages Remove broken unloading test","code":""},{"path":"https://mlr3cluster.mlr-org.com/news/index.html","id":"mlr3cluster-016","dir":"Changelog","previous_headings":"","what":"mlr3cluster 0.1.6","title":"mlr3cluster 0.1.6","text":"CRAN release: 2022-12-22 Add states row names usarrest task. Remove dictionary items unloading package.","code":""},{"path":"https://mlr3cluster.mlr-org.com/news/index.html","id":"mlr3cluster-015","dir":"Changelog","previous_headings":"","what":"mlr3cluster 0.1.5","title":"mlr3cluster 0.1.5","text":"CRAN release: 2022-11-01 Added Mclust learner Fix error associated new dbscan release","code":""},{"path":"https://mlr3cluster.mlr-org.com/news/index.html","id":"mlr3cluster-014","dir":"Changelog","previous_headings":"","what":"mlr3cluster 0.1.4","title":"mlr3cluster 0.1.4","text":"CRAN release: 2022-08-14 code refactoring","code":""},{"path":"https://mlr3cluster.mlr-org.com/news/index.html","id":"mlr3cluster-013","dir":"Changelog","previous_headings":"","what":"mlr3cluster 0.1.3","title":"mlr3cluster 0.1.3","text":"CRAN release: 2022-04-06 code refactoring small fixes add filter PredictionClust","code":""},{"path":"https://mlr3cluster.mlr-org.com/news/index.html","id":"mlr3cluster-012","dir":"Changelog","previous_headings":"","what":"mlr3cluster 0.1.2","title":"mlr3cluster 0.1.2","text":"CRAN release: 2021-09-02 Add Hclust test doc hclust Add within sum squares measure add doc wss code factor adaptions","code":""},{"path":"https://mlr3cluster.mlr-org.com/news/index.html","id":"mlr3cluster-011","dir":"Changelog","previous_headings":"","what":"mlr3cluster 0.1.1","title":"mlr3cluster 0.1.1","text":"CRAN release: 2020-11-15 Eight new learners Added assignments save_assignments fields LearnerClust class","code":""},{"path":"https://mlr3cluster.mlr-org.com/news/index.html","id":"mlr3cluster-010","dir":"Changelog","previous_headings":"","what":"mlr3cluster 0.1.0","title":"mlr3cluster 0.1.0","text":"CRAN release: 2020-10-01 Initial upload CRAN","code":""}]
+[{"path":"https://mlr3cluster.mlr-org.com/authors.html","id":null,"dir":"","previous_headings":"","what":"Authors","title":"Authors and Citation","text":"Damir Pulatov. Maintainer, author. Michel Lang. Author.","code":""},{"path":"https://mlr3cluster.mlr-org.com/authors.html","id":"citation","dir":"","previous_headings":"","what":"Citation","title":"Authors and Citation","text":"Pulatov D, Lang M (2023). mlr3cluster: Cluster Extension 'mlr3'. R package version 0.1.8.9000, https://github.com/mlr-org/mlr3cluster, https://mlr3cluster.mlr-org.com.","code":"@Manual{, title = {mlr3cluster: Cluster Extension for 'mlr3'}, author = {Damir Pulatov and Michel Lang}, year = {2023}, note = {R package version 0.1.8.9000, https://github.com/mlr-org/mlr3cluster}, url = {https://mlr3cluster.mlr-org.com}, }"},{"path":"https://mlr3cluster.mlr-org.com/index.html","id":"mlr3cluster","dir":"","previous_headings":"","what":"Cluster Extension for mlr3","title":"Cluster Extension for mlr3","text":"Cluster analysis mlr3 mlr3cluster extension package cluster analysis within mlr3 ecosystem. successor clustering capabilities mlr2.","code":""},{"path":"https://mlr3cluster.mlr-org.com/index.html","id":"installation","dir":"","previous_headings":"","what":"Installation","title":"Cluster Extension for mlr3","text":"Install last release CRAN: Install development version GitHub:","code":"install.packages(\"mlr3cluster\") devtools::install_github(\"mlr-org/mlr3cluster\")"},{"path":"https://mlr3cluster.mlr-org.com/index.html","id":"feature-overview","dir":"","previous_headings":"","what":"Feature Overview","title":"Cluster Extension for mlr3","text":"current version mlr3cluster contains: selection 19 clustering learners represent wide variety clusterers: partitional, hierarchical, fuzzy, etc. selection 4 performance measures Two built-tasks get started clustering Also, package integrated mlr3viz enables create great visualizations just one line code!","code":""},{"path":[]},{"path":[]},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/index.html","id":"example","dir":"","previous_headings":"","what":"Example","title":"Cluster Extension for mlr3","text":"","code":"library(mlr3) library(mlr3cluster) task = mlr_tasks$get(\"usarrests\") learner = mlr_learners$get(\"clust.kmeans\") learner$train(task) preds = learner$predict(task = task)"},{"path":"https://mlr3cluster.mlr-org.com/index.html","id":"more-resources","dir":"","previous_headings":"","what":"More Resources","title":"Cluster Extension for mlr3","text":"Check blogpost detailed introduction package. Also, mlr3book section clustering.","code":""},{"path":"https://mlr3cluster.mlr-org.com/index.html","id":"future-plans","dir":"","previous_headings":"","what":"Future Plans","title":"Cluster Extension for mlr3","text":"Add learners measures Integrate package mlr3pipelines (work progress) questions, feedback ideas, feel free open issue .","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/LearnerClust.html","id":null,"dir":"Reference","previous_headings":"","what":"Cluster Learner — LearnerClust","title":"Cluster Learner — LearnerClust","text":"Learner specializes mlr3::Learner cluster problems: task_type set \"clust\". Creates Predictions class PredictionClust. Possible values predict_types : \"partition\": Integer indicating cluster membership. \"prob\": Probability belonging cluster. Predefined learners can found mlr3misc::Dictionary mlr3::mlr_learners.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/LearnerClust.html","id":"super-class","dir":"Reference","previous_headings":"","what":"Super class","title":"Cluster Learner — LearnerClust","text":"mlr3::Learner -> LearnerClust","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/LearnerClust.html","id":"public-fields","dir":"Reference","previous_headings":"","what":"Public fields","title":"Cluster Learner — LearnerClust","text":"assignments (NULL | vector()) Cluster assignments learned model. save_assignments (logical()) assignments 'train' data saved learner? Default TRUE.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/LearnerClust.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Cluster Learner — LearnerClust","text":"mlr3::Learner$base_learner() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/LearnerClust.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Cluster Learner — LearnerClust","text":"LearnerClust$new() LearnerClust$reset() LearnerClust$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/LearnerClust.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Cluster Learner — LearnerClust","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/LearnerClust.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Cluster Learner — LearnerClust","text":"","code":"LearnerClust$new( id, param_set = ps(), predict_types = \"partition\", feature_types = character(), properties = character(), packages = character(), label = NA_character_, man = NA_character_ )"},{"path":"https://mlr3cluster.mlr-org.com/reference/LearnerClust.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Cluster Learner — LearnerClust","text":"id (character(1)) Identifier new instance. param_set (paradox::ParamSet) Set hyperparameters. predict_types (character()) Supported predict types. Must subset mlr_reflections$learner_predict_types. feature_types (character()) Feature types learner operates . Must subset mlr_reflections$task_feature_types. properties (character()) Set properties Learner. Must subset mlr_reflections$learner_properties. following properties currently standardized understood learners mlr3: \"missings\": learner can handle missing values data. \"weights\": learner supports observation weights. \"importance\": learner supports extraction importance scores, .e. comes $importance() extractor function (see section optional extractors Learner). \"selected_features\": learner supports extraction set selected features, .e. comes $selected_features() extractor function (see section optional extractors Learner). \"oob_error\": learner supports extraction estimated bag error, .e. comes oob_error() extractor function (see section optional extractors Learner). packages (character()) Set required packages. warning signaled constructor least one packages installed, loaded (attached) later -demand via requireNamespace(). label (character(1)) Label new instance. man (character(1)) String format [pkg]::[topic] pointing manual page object. referenced help package can opened via method $help().","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/LearnerClust.html","id":"method-reset-","dir":"Reference","previous_headings":"","what":"Method reset()","title":"Cluster Learner — LearnerClust","text":"Reset assignments field calling parent's reset().","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/LearnerClust.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Cluster Learner — LearnerClust","text":"","code":"LearnerClust$reset()"},{"path":"https://mlr3cluster.mlr-org.com/reference/LearnerClust.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Cluster Learner — LearnerClust","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/LearnerClust.html","id":"usage-2","dir":"Reference","previous_headings":"","what":"Usage","title":"Cluster Learner — LearnerClust","text":"","code":"LearnerClust$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/reference/LearnerClust.html","id":"arguments-1","dir":"Reference","previous_headings":"","what":"Arguments","title":"Cluster Learner — LearnerClust","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/LearnerClust.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Cluster Learner — LearnerClust","text":"","code":"library(mlr3) library(mlr3cluster) ids = mlr_learners$keys(\"^clust\") ids #> [1] \"clust.MBatchKMeans\" \"clust.SimpleKMeans\" \"clust.agnes\" #> [4] \"clust.ap\" \"clust.cmeans\" \"clust.cobweb\" #> [7] \"clust.dbscan\" \"clust.dbscan_fpc\" \"clust.diana\" #> [10] \"clust.em\" \"clust.fanny\" \"clust.featureless\" #> [13] \"clust.ff\" \"clust.hclust\" \"clust.kkmeans\" #> [16] \"clust.kmeans\" \"clust.mclust\" \"clust.meanshift\" #> [19] \"clust.pam\" \"clust.xmeans\" # get a specific learner from mlr_learners: lrn = mlr_learners$get(\"clust.kmeans\") print(lrn) #> : K-Means #> * Model: - #> * Parameters: centers=2 #> * Packages: mlr3, mlr3cluster, stats, clue #> * Predict Types: [partition] #> * Feature Types: logical, integer, numeric #> * Properties: complete, exclusive, partitional"},{"path":"https://mlr3cluster.mlr-org.com/reference/MeasureClust.html","id":null,"dir":"Reference","previous_headings":"","what":"Cluster Measure — MeasureClust","title":"Cluster Measure — MeasureClust","text":"measure specializes mlr3::Measure cluster analysis: task_type set \"clust\". Possible values predict_type \"partition\" \"prob\". Predefined measures can found mlr3misc::Dictionary mlr3::mlr_measures.","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/reference/MeasureClust.html","id":"super-class","dir":"Reference","previous_headings":"","what":"Super class","title":"Cluster Measure — MeasureClust","text":"mlr3::Measure -> MeasureClust","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/MeasureClust.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Cluster Measure — MeasureClust","text":"mlr3::Measure$aggregate() mlr3::Measure$format() mlr3::Measure$help() mlr3::Measure$print() mlr3::Measure$score()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/MeasureClust.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Cluster Measure — MeasureClust","text":"MeasureClust$new()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/MeasureClust.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Cluster Measure — MeasureClust","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/MeasureClust.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Cluster Measure — MeasureClust","text":"","code":"MeasureClust$new( id, range, minimize = NA, aggregator = NULL, properties = character(), predict_type = \"partition\", task_properties = character(), packages = character(), label = NA_character_, man = NA_character_ )"},{"path":"https://mlr3cluster.mlr-org.com/reference/MeasureClust.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Cluster Measure — MeasureClust","text":"id (character(1)) Identifier new instance. range (numeric(2)) Feasible range measure c(lower_bound, upper_bound). bounds may infinite. minimize (logical(1)) Set TRUE good predictions correspond small values, FALSE good predictions correspond large values. set NA (default), tuning measure possible. aggregator (function(x)) Function aggregate individual performance scores x x numeric vector. NULL, defaults mean(). properties (character()) Properties measure. Must subset mlr_reflections$measure_properties. Supported mlr3: \"requires_task\" (requires complete Task), \"requires_learner\" (requires trained Learner), \"requires_train_set\" (requires training indices Resampling), \"na_score\" (measure expected occasionally return NA NaN). predict_type (character(1)) Required predict type Learner. Possible values stored mlr_reflections$learner_predict_types. task_properties (character()) Required task properties, see Task. packages (character()) Set required packages. warning signaled constructor least one packages installed, loaded (attached) later -demand via requireNamespace(). label (character(1)) Label new instance. man (character(1)) String format [pkg]::[topic] pointing manual page object. referenced help package can opened via method $help().","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/PredictionClust.html","id":null,"dir":"Reference","previous_headings":"","what":"Prediction Object for Cluster Analysis — PredictionClust","title":"Prediction Object for Cluster Analysis — PredictionClust","text":"object wraps predictions returned learner class LearnerClust, .e. predicted partition cluster probability.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/PredictionClust.html","id":"super-class","dir":"Reference","previous_headings":"","what":"Super class","title":"Prediction Object for Cluster Analysis — PredictionClust","text":"mlr3::Prediction -> PredictionClust","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/PredictionClust.html","id":"active-bindings","dir":"Reference","previous_headings":"","what":"Active bindings","title":"Prediction Object for Cluster Analysis — PredictionClust","text":"partition (integer()) Access stored partition. prob (matrix()) Access stored probabilities.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/PredictionClust.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Prediction Object for Cluster Analysis — PredictionClust","text":"mlr3::Prediction$filter() mlr3::Prediction$format() mlr3::Prediction$help() mlr3::Prediction$print() mlr3::Prediction$score()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/PredictionClust.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Prediction Object for Cluster Analysis — PredictionClust","text":"PredictionClust$new() PredictionClust$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/PredictionClust.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Prediction Object for Cluster Analysis — PredictionClust","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/PredictionClust.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Prediction Object for Cluster Analysis — PredictionClust","text":"","code":"PredictionClust$new( task = NULL, row_ids = task$row_ids, partition = NULL, prob = NULL, check = TRUE )"},{"path":"https://mlr3cluster.mlr-org.com/reference/PredictionClust.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Prediction Object for Cluster Analysis — PredictionClust","text":"task (TaskClust) Task, used extract defaults row_ids. row_ids (integer()) Row ids predicted observations, .e. row ids test set. partition (integer()) Vector cluster partitions. prob (matrix()) Numeric matrix cluster membership probabilities one column cluster one row observation. Columns must named cluster numbers, row names automatically removed. prob provided, partition , cluster memberships calculated probabilities using max.col() ties.method set \"first\". check (logical(1)) TRUE, performs argument checks predict type conversions.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/PredictionClust.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Prediction Object for Cluster Analysis — PredictionClust","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/PredictionClust.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Prediction Object for Cluster Analysis — PredictionClust","text":"","code":"PredictionClust$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/reference/PredictionClust.html","id":"arguments-1","dir":"Reference","previous_headings":"","what":"Arguments","title":"Prediction Object for Cluster Analysis — PredictionClust","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/PredictionClust.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Prediction Object for Cluster Analysis — PredictionClust","text":"","code":"library(mlr3) library(mlr3cluster) task = tsk(\"usarrests\") learner = lrn(\"clust.kmeans\") p = learner$train(task)$predict(task) p$predict_types #> [1] \"partition\" head(as.data.table(p)) #> row_ids partition #> 1: 1 1 #> 2: 2 1 #> 3: 3 1 #> 4: 4 1 #> 5: 5 1 #> 6: 6 1"},{"path":"https://mlr3cluster.mlr-org.com/reference/TaskClust.html","id":null,"dir":"Reference","previous_headings":"","what":"Cluster Task — TaskClust","title":"Cluster Task — TaskClust","text":"task specializes mlr3::Task cluster problems. unsupervised task, task target column. task_type set \"clust\". Predefined tasks stored dictionary mlr_tasks.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/TaskClust.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Cluster Task — TaskClust","text":"mlr3::Task -> mlr3::TaskUnsupervised -> TaskClust","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/TaskClust.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Cluster Task — TaskClust","text":"mlr3::Task$add_strata() mlr3::Task$cbind() mlr3::Task$data() mlr3::Task$droplevels() mlr3::Task$filter() mlr3::Task$format() mlr3::Task$formula() mlr3::Task$head() mlr3::Task$help() mlr3::Task$levels() mlr3::Task$missings() mlr3::Task$print() mlr3::Task$rbind() mlr3::Task$rename() mlr3::Task$select() mlr3::Task$set_col_roles() mlr3::Task$set_levels() mlr3::Task$set_row_roles()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/TaskClust.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Cluster Task — TaskClust","text":"TaskClust$new() TaskClust$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/TaskClust.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Cluster Task — TaskClust","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/TaskClust.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Cluster Task — TaskClust","text":"","code":"TaskClust$new(id, backend, label = NA_character_)"},{"path":"https://mlr3cluster.mlr-org.com/reference/TaskClust.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Cluster Task — TaskClust","text":"id (character(1)) Identifier new instance. backend (DataBackend) Either DataBackend, object convertible DataBackend as_data_backend(). E.g., data.frame() converted DataBackendDataTable. label (character(1)) Label new instance.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/TaskClust.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Cluster Task — TaskClust","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/TaskClust.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Cluster Task — TaskClust","text":"","code":"TaskClust$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/reference/TaskClust.html","id":"arguments-1","dir":"Reference","previous_headings":"","what":"Arguments","title":"Cluster Task — TaskClust","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/TaskClust.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Cluster Task — TaskClust","text":"","code":"library(mlr3) library(mlr3cluster) task = TaskClust$new(\"usarrests\", backend = USArrests) task$task_type #> [1] \"clust\" # possible properties: mlr_reflections$task_properties$clust #> [1] \"strata\" \"groups\" \"weights\""},{"path":"https://mlr3cluster.mlr-org.com/reference/as_prediction_clust.html","id":null,"dir":"Reference","previous_headings":"","what":"Convert to a Cluster Prediction — as_prediction_clust","title":"Convert to a Cluster Prediction — as_prediction_clust","text":"Convert object PredictionClust.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/as_prediction_clust.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Convert to a Cluster Prediction — as_prediction_clust","text":"","code":"as_prediction_clust(x, ...) # S3 method for PredictionClust as_prediction_clust(x, ...) # S3 method for data.frame as_prediction_clust(x, ...)"},{"path":"https://mlr3cluster.mlr-org.com/reference/as_prediction_clust.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Convert to a Cluster Prediction — as_prediction_clust","text":"x () Object convert. ... () Additional arguments.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/as_prediction_clust.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Convert to a Cluster Prediction — as_prediction_clust","text":"PredictionClust.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/as_prediction_clust.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Convert to a Cluster Prediction — as_prediction_clust","text":"","code":"if (requireNamespace(\"e1071\")) { # create a prediction object task = tsk(\"usarrests\") learner = lrn(\"clust.kmeans\") learner = lrn(\"clust.cmeans\", predict_type = \"prob\") learner$train(task) p = learner$predict(task) # convert to a data.table tab = as.data.table(p) # convert back to a Prediction as_prediction_clust(tab) # split data.table into a 3 data.tables based on UrbanPop f = cut(task$data(rows = tab$row_ids)$UrbanPop, 3) tabs = split(tab, f) # convert back to list of predictions preds = lapply(tabs, as_prediction_clust) # calculate performance in each group sapply(preds, function(p) p$score(task = task)) } #> Loading required namespace: e1071 #> (31.9,51.7].clust.dunn (51.7,71.3].clust.dunn (71.3,91.1].clust.dunn #> 0.7096902 0.1226172 0.2538652"},{"path":"https://mlr3cluster.mlr-org.com/reference/as_task_clust.html","id":null,"dir":"Reference","previous_headings":"","what":"Convert to a Cluster Task — as_task_clust","title":"Convert to a Cluster Task — as_task_clust","text":"Convert object TaskClust. S3 generic, specialized least following objects: TaskClust: ensure identity. data.frame() DataBackend: provides alternative calling constructor TaskClust.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/as_task_clust.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Convert to a Cluster Task — as_task_clust","text":"","code":"as_task_clust(x, ...) # S3 method for TaskClust as_task_clust(x, clone = FALSE, ...) # S3 method for data.frame as_task_clust(x, id = deparse(substitute(x)), ...) # S3 method for DataBackend as_task_clust(x, id = deparse(substitute(x)), ...) # S3 method for formula as_task_clust(x, data, id = deparse(substitute(data)), ...)"},{"path":"https://mlr3cluster.mlr-org.com/reference/as_task_clust.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Convert to a Cluster Task — as_task_clust","text":"x () Object convert. ... () Additional arguments. clone (logical(1)) TRUE, ensures returned object input x. id (character(1)) Id new task. Defaults (deparsed substituted) name data argument. data (data.frame()) Data frame containing columns specified formula x.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/as_task_clust.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Convert to a Cluster Task — as_task_clust","text":"TaskClust.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/as_task_clust.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Convert to a Cluster Task — as_task_clust","text":"","code":"as_task_clust(datasets::USArrests) #> (50 x 4) #> * Target: - #> * Properties: - #> * Features (4): #> - int (2): Assault, UrbanPop #> - dbl (2): Murder, Rape"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr3cluster-package.html","id":null,"dir":"Reference","previous_headings":"","what":"mlr3cluster: Cluster Extension for 'mlr3' — mlr3cluster-package","title":"mlr3cluster: Cluster Extension for 'mlr3' — mlr3cluster-package","text":"Extends 'mlr3' package cluster analysis.","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr3cluster-package.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"mlr3cluster: Cluster Extension for 'mlr3' — mlr3cluster-package","text":"Maintainer: Damir Pulatov damirpolat@protonmail.com Authors: Michel Lang michellang@gmail.com (ORCID)","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.MBatchKMeans.html","id":null,"dir":"Reference","previous_headings":"","what":"Mini Batch K-Means Clustering Learner — mlr_learners_clust.MBatchKMeans","title":"Mini Batch K-Means Clustering Learner — mlr_learners_clust.MBatchKMeans","text":"LearnerClust mini batch k-means clustering implemented ClusterR::MiniBatchKmeans(). ClusterR::MiniBatchKmeans() default value number clusters. Therefore, clusters parameter set 2 default. predict method uses ClusterR::predict_MBatchKMeans() compute cluster memberships new data. learner supports partitional fuzzy clustering.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.MBatchKMeans.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"Mini Batch K-Means Clustering Learner — mlr_learners_clust.MBatchKMeans","text":"Learner can instantiated via dictionary mlr_learners associated sugar function lrn():","code":"mlr_learners$get(\"clust.MBatchKMeans\") lrn(\"clust.MBatchKMeans\")"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.MBatchKMeans.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Mini Batch K-Means Clustering Learner — mlr_learners_clust.MBatchKMeans","text":"Task type: “clust” Predict Types: “partition”, “prob” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, ClusterR","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.MBatchKMeans.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Mini Batch K-Means Clustering Learner — mlr_learners_clust.MBatchKMeans","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustMiniBatchKMeans","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.MBatchKMeans.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Mini Batch K-Means Clustering Learner — mlr_learners_clust.MBatchKMeans","text":"mlr3::Learner$base_learner() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.MBatchKMeans.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Mini Batch K-Means Clustering Learner — mlr_learners_clust.MBatchKMeans","text":"LearnerClustMiniBatchKMeans$new() LearnerClustMiniBatchKMeans$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.MBatchKMeans.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Mini Batch K-Means Clustering Learner — mlr_learners_clust.MBatchKMeans","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.MBatchKMeans.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Mini Batch K-Means Clustering Learner — mlr_learners_clust.MBatchKMeans","text":"","code":"LearnerClustMiniBatchKMeans$new()"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.MBatchKMeans.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Mini Batch K-Means Clustering Learner — mlr_learners_clust.MBatchKMeans","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.MBatchKMeans.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Mini Batch K-Means Clustering Learner — mlr_learners_clust.MBatchKMeans","text":"","code":"LearnerClustMiniBatchKMeans$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.MBatchKMeans.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Mini Batch K-Means Clustering Learner — mlr_learners_clust.MBatchKMeans","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.MBatchKMeans.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Mini Batch K-Means Clustering Learner — mlr_learners_clust.MBatchKMeans","text":"","code":"if (requireNamespace(\"ClusterR\")) { learner = mlr3::lrn(\"clust.MBatchKMeans\") print(learner) # available parameters: learner$param_set$ids() } #> : Mini Batch K-Means #> * Model: - #> * Parameters: clusters=2 #> * Packages: mlr3, mlr3cluster, ClusterR #> * Predict Types: [partition], prob #> * Feature Types: logical, integer, numeric #> * Properties: complete, exclusive, fuzzy, partitional #> [1] \"clusters\" \"batch_size\" \"num_init\" \"max_iters\" #> [5] \"init_fraction\" \"initializer\" \"early_stop_iter\" \"verbose\" #> [9] \"CENTROIDS\" \"tol\" \"tol_optimal_init\" \"seed\""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.SimpleKMeans.html","id":null,"dir":"Reference","previous_headings":"","what":"K-Means Clustering Learner from Weka — mlr_learners_clust.SimpleKMeans","title":"K-Means Clustering Learner from Weka — mlr_learners_clust.SimpleKMeans","text":"LearnerClust Simple K Means clustering implemented RWeka::SimpleKMeans(). predict method uses RWeka::predict.Weka_clusterer() compute cluster memberships new data.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.SimpleKMeans.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"K-Means Clustering Learner from Weka — mlr_learners_clust.SimpleKMeans","text":"Learner can instantiated via dictionary mlr_learners associated sugar function lrn():","code":"mlr_learners$get(\"clust.SimpleKMeans\") lrn(\"clust.SimpleKMeans\")"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.SimpleKMeans.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"K-Means Clustering Learner from Weka — mlr_learners_clust.SimpleKMeans","text":"Task type: “clust” Predict Types: “partition” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, RWeka","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.SimpleKMeans.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"K-Means Clustering Learner from Weka — mlr_learners_clust.SimpleKMeans","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustSimpleKMeans","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.SimpleKMeans.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"K-Means Clustering Learner from Weka — mlr_learners_clust.SimpleKMeans","text":"mlr3::Learner$base_learner() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.SimpleKMeans.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"K-Means Clustering Learner from Weka — mlr_learners_clust.SimpleKMeans","text":"LearnerClustSimpleKMeans$new() LearnerClustSimpleKMeans$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.SimpleKMeans.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"K-Means Clustering Learner from Weka — mlr_learners_clust.SimpleKMeans","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.SimpleKMeans.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"K-Means Clustering Learner from Weka — mlr_learners_clust.SimpleKMeans","text":"","code":"LearnerClustSimpleKMeans$new()"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.SimpleKMeans.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"K-Means Clustering Learner from Weka — mlr_learners_clust.SimpleKMeans","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.SimpleKMeans.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"K-Means Clustering Learner from Weka — mlr_learners_clust.SimpleKMeans","text":"","code":"LearnerClustSimpleKMeans$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.SimpleKMeans.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"K-Means Clustering Learner from Weka — mlr_learners_clust.SimpleKMeans","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.SimpleKMeans.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"K-Means Clustering Learner from Weka — mlr_learners_clust.SimpleKMeans","text":"","code":"if (FALSE) { if (requireNamespace(\"RWeka\")) { learner = mlr3::lrn(\"clust.SimpleKMeans\") print(learner) # available parameters: learner$param_set$ids() }}"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.agnes.html","id":null,"dir":"Reference","previous_headings":"","what":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.agnes","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.agnes","text":"LearnerClust agglomerative hierarchical clustering implemented cluster::agnes(). predict method uses stats::cutree() cuts tree resulting hierarchical clustering specified number groups (see parameter k). default number k 2.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.agnes.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.agnes","text":"Learner can instantiated via dictionary mlr_learners associated sugar function lrn():","code":"mlr_learners$get(\"clust.agnes\") lrn(\"clust.agnes\")"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.agnes.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.agnes","text":"Task type: “clust” Predict Types: “partition” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, cluster","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.agnes.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.agnes","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustAgnes","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.agnes.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.agnes","text":"mlr3::Learner$base_learner() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.agnes.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.agnes","text":"LearnerClustAgnes$new() LearnerClustAgnes$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.agnes.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.agnes","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.agnes.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.agnes","text":"","code":"LearnerClustAgnes$new()"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.agnes.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.agnes","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.agnes.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.agnes","text":"","code":"LearnerClustAgnes$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.agnes.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.agnes","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.agnes.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.agnes","text":"","code":"if (requireNamespace(\"cluster\")) { learner = mlr3::lrn(\"clust.agnes\") print(learner) # available parameters: learner$param_set$ids() } #> : Agglomerative Hierarchical Clustering #> * Model: - #> * Parameters: k=2 #> * Packages: mlr3, mlr3cluster, cluster #> * Predict Types: [partition] #> * Feature Types: logical, integer, numeric #> * Properties: complete, exclusive, hierarchical #> [1] \"metric\" \"stand\" \"method\" \"trace.lev\" \"k\" #> [6] \"par.method\""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.ap.html","id":null,"dir":"Reference","previous_headings":"","what":"Affinity Propagation Clustering Learner — mlr_learners_clust.ap","title":"Affinity Propagation Clustering Learner — mlr_learners_clust.ap","text":"LearnerClust Affinity Propagation clustering implemented apcluster::apcluster(). apcluster::apcluster() set default similarity function. predict method computes closest cluster exemplar find cluster memberships new data. code taken StackOverflow answer apcluster package maintainer.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.ap.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"Affinity Propagation Clustering Learner — mlr_learners_clust.ap","text":"Learner can instantiated via dictionary mlr_learners associated sugar function lrn():","code":"mlr_learners$get(\"clust.ap\") lrn(\"clust.ap\")"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.ap.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Affinity Propagation Clustering Learner — mlr_learners_clust.ap","text":"Task type: “clust” Predict Types: “partition” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, apcluster","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.ap.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Affinity Propagation Clustering Learner — mlr_learners_clust.ap","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustAP","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.ap.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Affinity Propagation Clustering Learner — mlr_learners_clust.ap","text":"mlr3::Learner$base_learner() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.ap.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Affinity Propagation Clustering Learner — mlr_learners_clust.ap","text":"LearnerClustAP$new() LearnerClustAP$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.ap.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Affinity Propagation Clustering Learner — mlr_learners_clust.ap","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.ap.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Affinity Propagation Clustering Learner — mlr_learners_clust.ap","text":"","code":"LearnerClustAP$new()"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.ap.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Affinity Propagation Clustering Learner — mlr_learners_clust.ap","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.ap.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Affinity Propagation Clustering Learner — mlr_learners_clust.ap","text":"","code":"LearnerClustAP$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.ap.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Affinity Propagation Clustering Learner — mlr_learners_clust.ap","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.ap.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Affinity Propagation Clustering Learner — mlr_learners_clust.ap","text":"","code":"if (requireNamespace(\"apcluster\")) { learner = mlr3::lrn(\"clust.ap\") print(learner) # available parameters: learner$param_set$ids() } #> : Affinity Propagation Clustering #> * Model: - #> * Parameters: list() #> * Packages: mlr3, mlr3cluster, apcluster #> * Predict Types: [partition] #> * Feature Types: logical, integer, numeric #> * Properties: complete, exclusive, partitional #> [1] \"s\" \"p\" \"q\" \"maxits\" \"convits\" #> [6] \"lam\" \"includeSim\" \"details\" \"nonoise\" \"seed\""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.cmeans.html","id":null,"dir":"Reference","previous_headings":"","what":"Fuzzy C-Means Clustering Learner — mlr_learners_clust.cmeans","title":"Fuzzy C-Means Clustering Learner — mlr_learners_clust.cmeans","text":"LearnerClust fuzzy clustering implemented e1071::cmeans(). e1071::cmeans() default value number clusters. Therefore, centers parameter set 2 default. predict method uses clue::cl_predict() compute cluster memberships new data.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.cmeans.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"Fuzzy C-Means Clustering Learner — mlr_learners_clust.cmeans","text":"Learner can instantiated via dictionary mlr_learners associated sugar function lrn():","code":"mlr_learners$get(\"clust.cmeans\") lrn(\"clust.cmeans\")"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.cmeans.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Fuzzy C-Means Clustering Learner — mlr_learners_clust.cmeans","text":"Task type: “clust” Predict Types: “partition”, “prob” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, e1071","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.cmeans.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Fuzzy C-Means Clustering Learner — mlr_learners_clust.cmeans","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustCMeans","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.cmeans.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Fuzzy C-Means Clustering Learner — mlr_learners_clust.cmeans","text":"mlr3::Learner$base_learner() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.cmeans.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Fuzzy C-Means Clustering Learner — mlr_learners_clust.cmeans","text":"LearnerClustCMeans$new() LearnerClustCMeans$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.cmeans.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Fuzzy C-Means Clustering Learner — mlr_learners_clust.cmeans","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.cmeans.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Fuzzy C-Means Clustering Learner — mlr_learners_clust.cmeans","text":"","code":"LearnerClustCMeans$new()"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.cmeans.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Fuzzy C-Means Clustering Learner — mlr_learners_clust.cmeans","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.cmeans.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Fuzzy C-Means Clustering Learner — mlr_learners_clust.cmeans","text":"","code":"LearnerClustCMeans$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.cmeans.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Fuzzy C-Means Clustering Learner — mlr_learners_clust.cmeans","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.cmeans.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Fuzzy C-Means Clustering Learner — mlr_learners_clust.cmeans","text":"","code":"if (requireNamespace(\"e1071\")) { learner = mlr3::lrn(\"clust.cmeans\") print(learner) # available parameters: learner$param_set$ids() } #> : Fuzzy C-Means Clustering Learner #> * Model: - #> * Parameters: centers=2 #> * Packages: mlr3, mlr3cluster, e1071 #> * Predict Types: [partition], prob #> * Feature Types: logical, integer, numeric #> * Properties: complete, fuzzy, partitional #> [1] \"centers\" \"iter.max\" \"verbose\" \"dist\" \"method\" \"m\" \"rate.par\" #> [8] \"weights\" \"control\""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.cobweb.html","id":null,"dir":"Reference","previous_headings":"","what":"Cobweb Clustering Learner — mlr_learners_clust.cobweb","title":"Cobweb Clustering Learner — mlr_learners_clust.cobweb","text":"LearnerClust Cobweb clustering implemented RWeka::Cobweb(). predict method uses RWeka::predict.Weka_clusterer() compute cluster memberships new data.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.cobweb.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"Cobweb Clustering Learner — mlr_learners_clust.cobweb","text":"Learner can instantiated via dictionary mlr_learners associated sugar function lrn():","code":"mlr_learners$get(\"clust.cobweb\") lrn(\"clust.cobweb\")"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.cobweb.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Cobweb Clustering Learner — mlr_learners_clust.cobweb","text":"Task type: “clust” Predict Types: “partition” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, RWeka","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.cobweb.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Cobweb Clustering Learner — mlr_learners_clust.cobweb","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustCobweb","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.cobweb.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Cobweb Clustering Learner — mlr_learners_clust.cobweb","text":"mlr3::Learner$base_learner() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.cobweb.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Cobweb Clustering Learner — mlr_learners_clust.cobweb","text":"LearnerClustCobweb$new() LearnerClustCobweb$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.cobweb.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Cobweb Clustering Learner — mlr_learners_clust.cobweb","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.cobweb.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Cobweb Clustering Learner — mlr_learners_clust.cobweb","text":"","code":"LearnerClustCobweb$new()"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.cobweb.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Cobweb Clustering Learner — mlr_learners_clust.cobweb","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.cobweb.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Cobweb Clustering Learner — mlr_learners_clust.cobweb","text":"","code":"LearnerClustCobweb$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.cobweb.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Cobweb Clustering Learner — mlr_learners_clust.cobweb","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.cobweb.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Cobweb Clustering Learner — mlr_learners_clust.cobweb","text":"","code":"if (requireNamespace(\"RWeka\")) { learner = mlr3::lrn(\"clust.cobweb\") print(learner) # available parameters: learner$param_set$ids() } #> : Cobweb Clustering #> * Model: - #> * Parameters: list() #> * Packages: mlr3, mlr3cluster, RWeka #> * Predict Types: [partition] #> * Feature Types: logical, integer, numeric #> * Properties: complete, exclusive, partitional #> [1] \"A\" \"C\" \"S\""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.dbscan.html","id":null,"dir":"Reference","previous_headings":"","what":"Density-Based Clustering Learner — mlr_learners_clust.dbscan","title":"Density-Based Clustering Learner — mlr_learners_clust.dbscan","text":"LearnerClust density-based clustering implemented dbscan::dbscan(). predict method uses dbscan::predict.dbscan_fast() compute cluster memberships new data.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.dbscan.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"Density-Based Clustering Learner — mlr_learners_clust.dbscan","text":"Learner can instantiated via dictionary mlr_learners associated sugar function lrn():","code":"mlr_learners$get(\"clust.dbscan\") lrn(\"clust.dbscan\")"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.dbscan.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Density-Based Clustering Learner — mlr_learners_clust.dbscan","text":"Task type: “clust” Predict Types: “partition” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, dbscan","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.dbscan.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Density-Based Clustering Learner — mlr_learners_clust.dbscan","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustDBSCAN","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.dbscan.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Density-Based Clustering Learner — mlr_learners_clust.dbscan","text":"mlr3::Learner$base_learner() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.dbscan.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Density-Based Clustering Learner — mlr_learners_clust.dbscan","text":"LearnerClustDBSCAN$new() LearnerClustDBSCAN$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.dbscan.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Density-Based Clustering Learner — mlr_learners_clust.dbscan","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.dbscan.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Density-Based Clustering Learner — mlr_learners_clust.dbscan","text":"","code":"LearnerClustDBSCAN$new()"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.dbscan.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Density-Based Clustering Learner — mlr_learners_clust.dbscan","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.dbscan.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Density-Based Clustering Learner — mlr_learners_clust.dbscan","text":"","code":"LearnerClustDBSCAN$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.dbscan.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Density-Based Clustering Learner — mlr_learners_clust.dbscan","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.dbscan.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Density-Based Clustering Learner — mlr_learners_clust.dbscan","text":"","code":"if (requireNamespace(\"dbscan\")) { learner = mlr3::lrn(\"clust.dbscan\") print(learner) # available parameters: learner$param_set$ids() } #> : Density-Based Clustering #> * Model: - #> * Parameters: list() #> * Packages: mlr3, mlr3cluster, dbscan #> * Predict Types: [partition] #> * Feature Types: logical, integer, numeric #> * Properties: complete, exclusive, partitional #> [1] \"eps\" \"minPts\" \"borderPoints\" \"weights\" \"search\" #> [6] \"bucketSize\" \"splitRule\" \"approx\""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.dbscan_fpc.html","id":null,"dir":"Reference","previous_headings":"","what":"Density-Based Clustering Learner with fpc — mlr_learners_clust.dbscan_fpc","title":"Density-Based Clustering Learner with fpc — mlr_learners_clust.dbscan_fpc","text":"LearnerClust density-based clustering implemented fpc::dbscan(). predict method uses fpc::predict.dbscan() compute cluster memberships new data.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.dbscan_fpc.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"Density-Based Clustering Learner with fpc — mlr_learners_clust.dbscan_fpc","text":"Learner can instantiated via dictionary mlr_learners associated sugar function lrn():","code":"mlr_learners$get(\"clust.dbscan_fpc\") lrn(\"clust.dbscan_fpc\")"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.dbscan_fpc.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Density-Based Clustering Learner with fpc — mlr_learners_clust.dbscan_fpc","text":"Task type: “clust” Predict Types: “partition” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, fpc","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.dbscan_fpc.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Density-Based Clustering Learner with fpc — mlr_learners_clust.dbscan_fpc","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustDBSCANfpc","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.dbscan_fpc.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Density-Based Clustering Learner with fpc — mlr_learners_clust.dbscan_fpc","text":"mlr3::Learner$base_learner() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.dbscan_fpc.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Density-Based Clustering Learner with fpc — mlr_learners_clust.dbscan_fpc","text":"LearnerClustDBSCANfpc$new() LearnerClustDBSCANfpc$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.dbscan_fpc.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Density-Based Clustering Learner with fpc — mlr_learners_clust.dbscan_fpc","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.dbscan_fpc.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Density-Based Clustering Learner with fpc — mlr_learners_clust.dbscan_fpc","text":"","code":"LearnerClustDBSCANfpc$new()"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.dbscan_fpc.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Density-Based Clustering Learner with fpc — mlr_learners_clust.dbscan_fpc","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.dbscan_fpc.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Density-Based Clustering Learner with fpc — mlr_learners_clust.dbscan_fpc","text":"","code":"LearnerClustDBSCANfpc$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.dbscan_fpc.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Density-Based Clustering Learner with fpc — mlr_learners_clust.dbscan_fpc","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.dbscan_fpc.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Density-Based Clustering Learner with fpc — mlr_learners_clust.dbscan_fpc","text":"","code":"if (requireNamespace(\"fpc\")) { learner = mlr3::lrn(\"clust.dbscan_fpc\") print(learner) # available parameters: learner$param_set$ids() } #> : Density-Based Clustering with fpc #> * Model: - #> * Parameters: MinPts=5, scale=FALSE, seeds=TRUE, showplot=FALSE #> * Packages: mlr3, mlr3cluster, fpc #> * Predict Types: [partition] #> * Feature Types: logical, integer, numeric #> * Properties: complete, exclusive, partitional #> [1] \"eps\" \"MinPts\" \"scale\" \"method\" \"seeds\" \"showplot\" #> [7] \"countmode\""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.diana.html","id":null,"dir":"Reference","previous_headings":"","what":"Divisive Hierarchical Clustering Learner — mlr_learners_clust.diana","title":"Divisive Hierarchical Clustering Learner — mlr_learners_clust.diana","text":"LearnerClust divisive hierarchical clustering implemented cluster::diana(). predict method uses stats::cutree() cuts tree resulting hierarchical clustering specified number groups (see parameter k). default value k 2.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.diana.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"Divisive Hierarchical Clustering Learner — mlr_learners_clust.diana","text":"Learner can instantiated via dictionary mlr_learners associated sugar function lrn():","code":"mlr_learners$get(\"clust.diana\") lrn(\"clust.diana\")"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.diana.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Divisive Hierarchical Clustering Learner — mlr_learners_clust.diana","text":"Task type: “clust” Predict Types: “partition” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, cluster","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.diana.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Divisive Hierarchical Clustering Learner — mlr_learners_clust.diana","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustDiana","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.diana.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Divisive Hierarchical Clustering Learner — mlr_learners_clust.diana","text":"mlr3::Learner$base_learner() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.diana.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Divisive Hierarchical Clustering Learner — mlr_learners_clust.diana","text":"LearnerClustDiana$new() LearnerClustDiana$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.diana.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Divisive Hierarchical Clustering Learner — mlr_learners_clust.diana","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.diana.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Divisive Hierarchical Clustering Learner — mlr_learners_clust.diana","text":"","code":"LearnerClustDiana$new()"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.diana.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Divisive Hierarchical Clustering Learner — mlr_learners_clust.diana","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.diana.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Divisive Hierarchical Clustering Learner — mlr_learners_clust.diana","text":"","code":"LearnerClustDiana$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.diana.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Divisive Hierarchical Clustering Learner — mlr_learners_clust.diana","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.diana.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Divisive Hierarchical Clustering Learner — mlr_learners_clust.diana","text":"","code":"if (requireNamespace(\"cluster\")) { learner = mlr3::lrn(\"clust.diana\") print(learner) # available parameters: learner$param_set$ids() } #> : Divisive Hierarchical Clustering #> * Model: - #> * Parameters: k=2 #> * Packages: mlr3, mlr3cluster, cluster #> * Predict Types: [partition] #> * Feature Types: logical, integer, numeric #> * Properties: complete, exclusive, hierarchical #> [1] \"metric\" \"stand\" \"trace.lev\" \"k\""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.em.html","id":null,"dir":"Reference","previous_headings":"","what":"Expectation-Maximization Clustering Learner — mlr_learners_clust.em","title":"Expectation-Maximization Clustering Learner — mlr_learners_clust.em","text":"LearnerClust Expectation-Maximization clustering implemented RWeka::list_Weka_interfaces(). predict method uses RWeka::predict.Weka_clusterer() compute cluster memberships new data.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.em.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"Expectation-Maximization Clustering Learner — mlr_learners_clust.em","text":"Learner can instantiated via dictionary mlr_learners associated sugar function lrn():","code":"mlr_learners$get(\"clust.em\") lrn(\"clust.em\")"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.em.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Expectation-Maximization Clustering Learner — mlr_learners_clust.em","text":"Task type: “clust” Predict Types: “partition” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, RWeka","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.em.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Expectation-Maximization Clustering Learner — mlr_learners_clust.em","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustEM","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.em.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Expectation-Maximization Clustering Learner — mlr_learners_clust.em","text":"mlr3::Learner$base_learner() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.em.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Expectation-Maximization Clustering Learner — mlr_learners_clust.em","text":"LearnerClustEM$new() LearnerClustEM$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.em.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Expectation-Maximization Clustering Learner — mlr_learners_clust.em","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.em.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Expectation-Maximization Clustering Learner — mlr_learners_clust.em","text":"","code":"LearnerClustEM$new()"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.em.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Expectation-Maximization Clustering Learner — mlr_learners_clust.em","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.em.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Expectation-Maximization Clustering Learner — mlr_learners_clust.em","text":"","code":"LearnerClustEM$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.em.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Expectation-Maximization Clustering Learner — mlr_learners_clust.em","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.em.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Expectation-Maximization Clustering Learner — mlr_learners_clust.em","text":"","code":"if (requireNamespace(\"RWeka\")) { learner = mlr3::lrn(\"clust.em\") print(learner) # available parameters: learner$param_set$ids() } #> : Expectation-Maximization Clustering #> * Model: - #> * Parameters: list() #> * Packages: mlr3, mlr3cluster, RWeka #> * Predict Types: [partition] #> * Feature Types: logical, integer, numeric #> * Properties: complete, exclusive, partitional #> [1] \"I\" \"ll_cv\" \"ll_iter\" #> [4] \"M\" \"max\" \"N\" #> [7] \"num_slots\" \"S\" \"X\" #> [10] \"K\" \"V\" \"output_debug_info\""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.fanny.html","id":null,"dir":"Reference","previous_headings":"","what":"Fuzzy Analysis Clustering Learner — mlr_learners_clust.fanny","title":"Fuzzy Analysis Clustering Learner — mlr_learners_clust.fanny","text":"LearnerClust fuzzy clustering implemented cluster::fanny(). cluster::fanny() default value number clusters. Therefore, k parameter corresponds number clusters set 2 default. predict method copies cluster assignments memberships generated train data. predict work new data.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.fanny.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"Fuzzy Analysis Clustering Learner — mlr_learners_clust.fanny","text":"Learner can instantiated via dictionary mlr_learners associated sugar function lrn():","code":"mlr_learners$get(\"clust.fanny\") lrn(\"clust.fanny\")"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.fanny.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Fuzzy Analysis Clustering Learner — mlr_learners_clust.fanny","text":"Task type: “clust” Predict Types: “partition”, “prob” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, cluster","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.fanny.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Fuzzy Analysis Clustering Learner — mlr_learners_clust.fanny","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustFanny","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.fanny.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Fuzzy Analysis Clustering Learner — mlr_learners_clust.fanny","text":"mlr3::Learner$base_learner() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.fanny.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Fuzzy Analysis Clustering Learner — mlr_learners_clust.fanny","text":"LearnerClustFanny$new() LearnerClustFanny$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.fanny.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Fuzzy Analysis Clustering Learner — mlr_learners_clust.fanny","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.fanny.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Fuzzy Analysis Clustering Learner — mlr_learners_clust.fanny","text":"","code":"LearnerClustFanny$new()"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.fanny.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Fuzzy Analysis Clustering Learner — mlr_learners_clust.fanny","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.fanny.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Fuzzy Analysis Clustering Learner — mlr_learners_clust.fanny","text":"","code":"LearnerClustFanny$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.fanny.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Fuzzy Analysis Clustering Learner — mlr_learners_clust.fanny","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.fanny.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Fuzzy Analysis Clustering Learner — mlr_learners_clust.fanny","text":"","code":"if (requireNamespace(\"cluster\")) { learner = mlr3::lrn(\"clust.fanny\") print(learner) # available parameters: learner$param_set$ids() } #> : Fuzzy Analysis Clustering #> * Model: - #> * Parameters: k=2 #> * Packages: mlr3, mlr3cluster, cluster #> * Predict Types: [partition], prob #> * Feature Types: logical, integer, numeric #> * Properties: complete, fuzzy, partitional #> [1] \"k\" \"memb.exp\" \"metric\" \"stand\" \"maxit\" \"tol\" #> [7] \"trace.lev\""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.featureless.html","id":null,"dir":"Reference","previous_headings":"","what":"Featureless Clustering Learner — mlr_learners_clust.featureless","title":"Featureless Clustering Learner — mlr_learners_clust.featureless","text":"simple LearnerClust randomly (evenly) assigns observations num_clusters partitions (default: 1 partition).","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.featureless.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"Featureless Clustering Learner — mlr_learners_clust.featureless","text":"Learner can instantiated via dictionary mlr_learners associated sugar function lrn():","code":"mlr_learners$get(\"clust.featureless\") lrn(\"clust.featureless\")"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.featureless.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Featureless Clustering Learner — mlr_learners_clust.featureless","text":"Task type: “clust” Predict Types: “partition”, “prob” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.featureless.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Featureless Clustering Learner — mlr_learners_clust.featureless","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustFeatureless","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.featureless.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Featureless Clustering Learner — mlr_learners_clust.featureless","text":"mlr3::Learner$base_learner() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.featureless.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Featureless Clustering Learner — mlr_learners_clust.featureless","text":"LearnerClustFeatureless$new() LearnerClustFeatureless$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.featureless.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Featureless Clustering Learner — mlr_learners_clust.featureless","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.featureless.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Featureless Clustering Learner — mlr_learners_clust.featureless","text":"","code":"LearnerClustFeatureless$new()"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.featureless.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Featureless Clustering Learner — mlr_learners_clust.featureless","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.featureless.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Featureless Clustering Learner — mlr_learners_clust.featureless","text":"","code":"LearnerClustFeatureless$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.featureless.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Featureless Clustering Learner — mlr_learners_clust.featureless","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.featureless.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Featureless Clustering Learner — mlr_learners_clust.featureless","text":"","code":"if (requireNamespace(\"mlr3\")) { learner = mlr3::lrn(\"clust.featureless\") print(learner) # available parameters: learner$param_set$ids() } #> : Featureless Clustering #> * Model: - #> * Parameters: num_clusters=1 #> * Packages: mlr3, mlr3cluster #> * Predict Types: [partition], prob #> * Feature Types: logical, integer, numeric #> * Properties: complete, exclusive, missings, partitional #> [1] \"num_clusters\""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.ff.html","id":null,"dir":"Reference","previous_headings":"","what":"Farthest First Clustering Learner — mlr_learners_clust.ff","title":"Farthest First Clustering Learner — mlr_learners_clust.ff","text":"LearnerClust Farthest First clustering implemented RWeka::FarthestFirst(). predict method uses RWeka::predict.Weka_clusterer() compute cluster memberships new data.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.ff.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"Farthest First Clustering Learner — mlr_learners_clust.ff","text":"Learner can instantiated via dictionary mlr_learners associated sugar function lrn():","code":"mlr_learners$get(\"clust.ff\") lrn(\"clust.ff\")"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.ff.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Farthest First Clustering Learner — mlr_learners_clust.ff","text":"Task type: “clust” Predict Types: “partition” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, RWeka","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.ff.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Farthest First Clustering Learner — mlr_learners_clust.ff","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustFF","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.ff.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Farthest First Clustering Learner — mlr_learners_clust.ff","text":"mlr3::Learner$base_learner() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.ff.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Farthest First Clustering Learner — mlr_learners_clust.ff","text":"LearnerClustFarthestFirst$new() LearnerClustFarthestFirst$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.ff.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Farthest First Clustering Learner — mlr_learners_clust.ff","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.ff.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Farthest First Clustering Learner — mlr_learners_clust.ff","text":"","code":"LearnerClustFarthestFirst$new()"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.ff.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Farthest First Clustering Learner — mlr_learners_clust.ff","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.ff.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Farthest First Clustering Learner — mlr_learners_clust.ff","text":"","code":"LearnerClustFarthestFirst$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.ff.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Farthest First Clustering Learner — mlr_learners_clust.ff","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.ff.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Farthest First Clustering Learner — mlr_learners_clust.ff","text":"","code":"if (FALSE) { if (requireNamespace(\"RWeka\")) { learner = mlr3::lrn(\"clust.ff\") print(learner) # available parameters: learner$param_set$ids() }}"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.hclust.html","id":null,"dir":"Reference","previous_headings":"","what":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.hclust","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.hclust","text":"LearnerClust agglomerative hierarchical clustering implemented stats::hclust(). Difference Calculation done stats::dist()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.hclust.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.hclust","text":"Learner can instantiated via dictionary mlr_learners associated sugar function lrn():","code":"mlr_learners$get(\"clust.hclust\") lrn(\"clust.hclust\")"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.hclust.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.hclust","text":"Task type: “clust” Predict Types: “partition” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, 'stats'","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.hclust.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.hclust","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustHclust","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.hclust.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.hclust","text":"mlr3::Learner$base_learner() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.hclust.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.hclust","text":"LearnerClustHclust$new() LearnerClustHclust$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.hclust.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.hclust","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.hclust.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.hclust","text":"","code":"LearnerClustHclust$new()"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.hclust.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.hclust","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.hclust.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.hclust","text":"","code":"LearnerClustHclust$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.hclust.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.hclust","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.hclust.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Agglomerative Hierarchical Clustering Learner — mlr_learners_clust.hclust","text":"","code":"if (requireNamespace(\"stats\")) { learner = mlr3::lrn(\"clust.hclust\") print(learner) # available parameters: learner$param_set$ids() } #> : Agglomerative Hierarchical Clustering #> * Model: - #> * Parameters: k=2, distmethod=euclidean #> * Packages: mlr3, mlr3cluster, stats #> * Predict Types: [partition] #> * Feature Types: logical, integer, numeric #> * Properties: complete, exclusive, hierarchical #> [1] \"method\" \"members\" \"distmethod\" \"diag\" \"upper\" #> [6] \"p\" \"k\""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.kkmeans.html","id":null,"dir":"Reference","previous_headings":"","what":"Kernel K-Means Clustering Learner — mlr_learners_clust.kkmeans","title":"Kernel K-Means Clustering Learner — mlr_learners_clust.kkmeans","text":"LearnerClust kernel k-means clustering implemented kernlab::kkmeans(). kernlab::kkmeans() default value number clusters. Therefore, centers parameter set 2 default. Kernel parameters passed directly using kpar list kkmeans. predict method finds nearest center kernel distance assign clusters new data points.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.kkmeans.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"Kernel K-Means Clustering Learner — mlr_learners_clust.kkmeans","text":"Learner can instantiated via dictionary mlr_learners associated sugar function lrn():","code":"mlr_learners$get(\"clust.kkmeans\") lrn(\"clust.kkmeans\")"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.kkmeans.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Kernel K-Means Clustering Learner — mlr_learners_clust.kkmeans","text":"Task type: “clust” Predict Types: “partition” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, kernlab","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.kkmeans.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Kernel K-Means Clustering Learner — mlr_learners_clust.kkmeans","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustKKMeans","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.kkmeans.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Kernel K-Means Clustering Learner — mlr_learners_clust.kkmeans","text":"mlr3::Learner$base_learner() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.kkmeans.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Kernel K-Means Clustering Learner — mlr_learners_clust.kkmeans","text":"LearnerClustKKMeans$new() LearnerClustKKMeans$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.kkmeans.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Kernel K-Means Clustering Learner — mlr_learners_clust.kkmeans","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.kkmeans.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Kernel K-Means Clustering Learner — mlr_learners_clust.kkmeans","text":"","code":"LearnerClustKKMeans$new()"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.kkmeans.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Kernel K-Means Clustering Learner — mlr_learners_clust.kkmeans","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.kkmeans.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Kernel K-Means Clustering Learner — mlr_learners_clust.kkmeans","text":"","code":"LearnerClustKKMeans$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.kkmeans.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Kernel K-Means Clustering Learner — mlr_learners_clust.kkmeans","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.kkmeans.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Kernel K-Means Clustering Learner — mlr_learners_clust.kkmeans","text":"","code":"if (requireNamespace(\"kernlab\")) { learner = mlr3::lrn(\"clust.kkmeans\") print(learner) # available parameters: learner$param_set$ids() } #> : Kernel K-Means #> * Model: - #> * Parameters: centers=2 #> * Packages: mlr3, mlr3cluster, kernlab #> * Predict Types: [partition] #> * Feature Types: logical, integer, numeric #> * Properties: complete, exclusive, partitional #> [1] \"centers\" \"kernel\" \"sigma\" \"degree\" \"scale\" \"offset\" \"order\" #> [8] \"alg\" \"p\""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.kmeans.html","id":null,"dir":"Reference","previous_headings":"","what":"K-Means Clustering Learner — mlr_learners_clust.kmeans","title":"K-Means Clustering Learner — mlr_learners_clust.kmeans","text":"LearnerClust k-means clustering implemented stats::kmeans(). stats::kmeans() default value number clusters. Therefore, centers parameter set 2 default. predict method uses clue::cl_predict() compute cluster memberships new data.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.kmeans.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"K-Means Clustering Learner — mlr_learners_clust.kmeans","text":"Learner can instantiated via dictionary mlr_learners associated sugar function lrn():","code":"mlr_learners$get(\"clust.kmeans\") lrn(\"clust.kmeans\")"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.kmeans.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"K-Means Clustering Learner — mlr_learners_clust.kmeans","text":"Task type: “clust” Predict Types: “partition” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, 'stats', clue","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.kmeans.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"K-Means Clustering Learner — mlr_learners_clust.kmeans","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustKMeans","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.kmeans.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"K-Means Clustering Learner — mlr_learners_clust.kmeans","text":"mlr3::Learner$base_learner() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.kmeans.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"K-Means Clustering Learner — mlr_learners_clust.kmeans","text":"LearnerClustKMeans$new() LearnerClustKMeans$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.kmeans.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"K-Means Clustering Learner — mlr_learners_clust.kmeans","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.kmeans.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"K-Means Clustering Learner — mlr_learners_clust.kmeans","text":"","code":"LearnerClustKMeans$new()"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.kmeans.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"K-Means Clustering Learner — mlr_learners_clust.kmeans","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.kmeans.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"K-Means Clustering Learner — mlr_learners_clust.kmeans","text":"","code":"LearnerClustKMeans$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.kmeans.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"K-Means Clustering Learner — mlr_learners_clust.kmeans","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.kmeans.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"K-Means Clustering Learner — mlr_learners_clust.kmeans","text":"","code":"if (requireNamespace(\"stats\") && requireNamespace(\"clue\")) { learner = mlr3::lrn(\"clust.kmeans\") print(learner) # available parameters: learner$param_set$ids() } #> : K-Means #> * Model: - #> * Parameters: centers=2 #> * Packages: mlr3, mlr3cluster, stats, clue #> * Predict Types: [partition] #> * Feature Types: logical, integer, numeric #> * Properties: complete, exclusive, partitional #> [1] \"centers\" \"iter.max\" \"algorithm\" \"nstart\" \"trace\""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.mclust.html","id":null,"dir":"Reference","previous_headings":"","what":"Gaussian Mixture Models-Based Clustering Learner — mlr_learners_clust.mclust","title":"Gaussian Mixture Models-Based Clustering Learner — mlr_learners_clust.mclust","text":"LearnerClust model-based clustering implemented mclust::Mclust(). predict method uses mclust::predict.Mclust() compute cluster memberships new data.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.mclust.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"Gaussian Mixture Models-Based Clustering Learner — mlr_learners_clust.mclust","text":"Learner can instantiated via dictionary mlr_learners associated sugar function lrn():","code":"mlr_learners$get(\"clust.mclust\") lrn(\"clust.mclust\")"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.mclust.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Gaussian Mixture Models-Based Clustering Learner — mlr_learners_clust.mclust","text":"Task type: “clust” Predict Types: “partition”, “prob” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, mclust","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.mclust.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Gaussian Mixture Models-Based Clustering Learner — mlr_learners_clust.mclust","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustMclust","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.mclust.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Gaussian Mixture Models-Based Clustering Learner — mlr_learners_clust.mclust","text":"mlr3::Learner$base_learner() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.mclust.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Gaussian Mixture Models-Based Clustering Learner — mlr_learners_clust.mclust","text":"LearnerClustMclust$new() LearnerClustMclust$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.mclust.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Gaussian Mixture Models-Based Clustering Learner — mlr_learners_clust.mclust","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.mclust.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Gaussian Mixture Models-Based Clustering Learner — mlr_learners_clust.mclust","text":"","code":"LearnerClustMclust$new()"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.mclust.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Gaussian Mixture Models-Based Clustering Learner — mlr_learners_clust.mclust","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.mclust.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Gaussian Mixture Models-Based Clustering Learner — mlr_learners_clust.mclust","text":"","code":"LearnerClustMclust$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.mclust.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Gaussian Mixture Models-Based Clustering Learner — mlr_learners_clust.mclust","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.mclust.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Gaussian Mixture Models-Based Clustering Learner — mlr_learners_clust.mclust","text":"","code":"if (requireNamespace(\"mclust\")) { learner = mlr3::lrn(\"clust.mclust\") print(learner) # available parameters: learner$param_set$ids() } #> : Gaussian Mixture Models Clustering #> * Model: - #> * Parameters: list() #> * Packages: mlr3, mlr3cluster, mclust #> * Predict Types: [partition], prob #> * Feature Types: logical, integer, numeric #> * Properties: complete, fuzzy, partitional #> [1] \"G\" \"modelNames\" \"prior\" \"control\" #> [5] \"initialization\" \"x\""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.meanshift.html","id":null,"dir":"Reference","previous_headings":"","what":"Mean Shift Clustering Learner — mlr_learners_clust.meanshift","title":"Mean Shift Clustering Learner — mlr_learners_clust.meanshift","text":"LearnerClust Mean Shift clustering implemented LPCM::ms(). predict method LPCM::ms(), method returns cluster labels 'training' data.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.meanshift.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"Mean Shift Clustering Learner — mlr_learners_clust.meanshift","text":"Learner can instantiated via dictionary mlr_learners associated sugar function lrn():","code":"mlr_learners$get(\"clust.meanshift\") lrn(\"clust.meanshift\")"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.meanshift.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Mean Shift Clustering Learner — mlr_learners_clust.meanshift","text":"Task type: “clust” Predict Types: “partition” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, LPCM","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.meanshift.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Mean Shift Clustering Learner — mlr_learners_clust.meanshift","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustMeanShift","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.meanshift.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Mean Shift Clustering Learner — mlr_learners_clust.meanshift","text":"mlr3::Learner$base_learner() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.meanshift.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Mean Shift Clustering Learner — mlr_learners_clust.meanshift","text":"LearnerClustMeanShift$new() LearnerClustMeanShift$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.meanshift.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Mean Shift Clustering Learner — mlr_learners_clust.meanshift","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.meanshift.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Mean Shift Clustering Learner — mlr_learners_clust.meanshift","text":"","code":"LearnerClustMeanShift$new()"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.meanshift.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Mean Shift Clustering Learner — mlr_learners_clust.meanshift","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.meanshift.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Mean Shift Clustering Learner — mlr_learners_clust.meanshift","text":"","code":"LearnerClustMeanShift$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.meanshift.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Mean Shift Clustering Learner — mlr_learners_clust.meanshift","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.meanshift.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Mean Shift Clustering Learner — mlr_learners_clust.meanshift","text":"","code":"if (requireNamespace(\"LPCM\")) { learner = mlr3::lrn(\"clust.meanshift\") print(learner) # available parameters: learner$param_set$ids() } #> : Mean Shift Clustering #> * Model: - #> * Parameters: list() #> * Packages: mlr3, mlr3cluster, LPCM #> * Predict Types: [partition] #> * Feature Types: logical, integer, numeric #> * Properties: complete, exclusive, partitional #> [1] \"h\" \"subset\" \"scaled\" \"iter\" \"thr\""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.pam.html","id":null,"dir":"Reference","previous_headings":"","what":"Partitioning Around Medoids Clustering Learner — mlr_learners_clust.pam","title":"Partitioning Around Medoids Clustering Learner — mlr_learners_clust.pam","text":"LearnerClust PAM clustering implemented cluster::pam(). cluster::pam() default value number clusters. Therefore, k parameter corresponds number clusters set 2 default. predict method uses clue::cl_predict() compute cluster memberships new data.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.pam.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"Partitioning Around Medoids Clustering Learner — mlr_learners_clust.pam","text":"Learner can instantiated via dictionary mlr_learners associated sugar function lrn():","code":"mlr_learners$get(\"clust.pam\") lrn(\"clust.pam\")"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.pam.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Partitioning Around Medoids Clustering Learner — mlr_learners_clust.pam","text":"Task type: “clust” Predict Types: “partition” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, cluster","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.pam.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Partitioning Around Medoids Clustering Learner — mlr_learners_clust.pam","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustPAM","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.pam.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Partitioning Around Medoids Clustering Learner — mlr_learners_clust.pam","text":"mlr3::Learner$base_learner() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.pam.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Partitioning Around Medoids Clustering Learner — mlr_learners_clust.pam","text":"LearnerClustPAM$new() LearnerClustPAM$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.pam.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Partitioning Around Medoids Clustering Learner — mlr_learners_clust.pam","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.pam.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Partitioning Around Medoids Clustering Learner — mlr_learners_clust.pam","text":"","code":"LearnerClustPAM$new()"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.pam.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Partitioning Around Medoids Clustering Learner — mlr_learners_clust.pam","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.pam.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Partitioning Around Medoids Clustering Learner — mlr_learners_clust.pam","text":"","code":"LearnerClustPAM$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.pam.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Partitioning Around Medoids Clustering Learner — mlr_learners_clust.pam","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.pam.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Partitioning Around Medoids Clustering Learner — mlr_learners_clust.pam","text":"","code":"if (requireNamespace(\"cluster\")) { learner = mlr3::lrn(\"clust.pam\") print(learner) # available parameters: learner$param_set$ids() } #> : Partitioning Around Medoids #> * Model: - #> * Parameters: k=2 #> * Packages: mlr3, mlr3cluster, cluster #> * Predict Types: [partition] #> * Feature Types: logical, integer, numeric #> * Properties: complete, exclusive, partitional #> [1] \"k\" \"metric\" \"medoids\" \"stand\" \"do.swap\" \"pamonce\" #> [7] \"trace.lev\""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.xmeans.html","id":null,"dir":"Reference","previous_headings":"","what":"X-means Clustering Learner — mlr_learners_clust.xmeans","title":"X-means Clustering Learner — mlr_learners_clust.xmeans","text":"LearnerClust X-means clustering implemented RWeka::XMeans(). predict method uses RWeka::predict.Weka_clusterer() compute cluster memberships new data.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.xmeans.html","id":"dictionary","dir":"Reference","previous_headings":"","what":"Dictionary","title":"X-means Clustering Learner — mlr_learners_clust.xmeans","text":"Learner can instantiated via dictionary mlr_learners associated sugar function lrn():","code":"mlr_learners$get(\"clust.xmeans\") lrn(\"clust.xmeans\")"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.xmeans.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"X-means Clustering Learner — mlr_learners_clust.xmeans","text":"Task type: “clust” Predict Types: “partition” Feature Types: “logical”, “integer”, “numeric” Required Packages: mlr3, mlr3cluster, RWeka","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.xmeans.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"X-means Clustering Learner — mlr_learners_clust.xmeans","text":"mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustXMeans","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.xmeans.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"X-means Clustering Learner — mlr_learners_clust.xmeans","text":"mlr3::Learner$base_learner() mlr3::Learner$format() mlr3::Learner$help() mlr3::Learner$predict() mlr3::Learner$predict_newdata() mlr3::Learner$print() mlr3::Learner$train() mlr3cluster::LearnerClust$reset()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.xmeans.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"X-means Clustering Learner — mlr_learners_clust.xmeans","text":"LearnerClustXMeans$new() LearnerClustXMeans$clone()","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.xmeans.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"X-means Clustering Learner — mlr_learners_clust.xmeans","text":"Creates new instance R6 class.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.xmeans.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"X-means Clustering Learner — mlr_learners_clust.xmeans","text":"","code":"LearnerClustXMeans$new()"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.xmeans.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"X-means Clustering Learner — mlr_learners_clust.xmeans","text":"objects class cloneable method.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.xmeans.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"X-means Clustering Learner — mlr_learners_clust.xmeans","text":"","code":"LearnerClustXMeans$clone(deep = FALSE)"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.xmeans.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"X-means Clustering Learner — mlr_learners_clust.xmeans","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_learners_clust.xmeans.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"X-means Clustering Learner — mlr_learners_clust.xmeans","text":"","code":"if (requireNamespace(\"RWeka\")) { learner = mlr3::lrn(\"clust.xmeans\") print(learner) # available parameters: learner$param_set$ids() } #> : X-means #> * Model: - #> * Parameters: list() #> * Packages: mlr3, mlr3cluster, RWeka #> * Predict Types: [partition] #> * Feature Types: logical, integer, numeric #> * Properties: complete, exclusive, partitional #> [1] \"B\" \"C\" \"D\" #> [4] \"H\" \"I\" \"J\" #> [7] \"K\" \"L\" \"M\" #> [10] \"S\" \"U\" \"use_kdtree\" #> [13] \"N\" \"O\" \"Y\" #> [16] \"output_debug_info\""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_measures_clust.ch.html","id":null,"dir":"Reference","previous_headings":"","what":"Calinski Harabasz Pseudo F-Statistic — mlr_measures_clust.ch","title":"Calinski Harabasz Pseudo F-Statistic — mlr_measures_clust.ch","text":"score function calls fpc::cluster.stats() package fpc. \"ch\" used subset output function call.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_measures_clust.ch.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Calinski Harabasz Pseudo F-Statistic — mlr_measures_clust.ch","text":"R6::R6Class() inheriting MeasureClust.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_measures_clust.ch.html","id":"construction","dir":"Reference","previous_headings":"","what":"Construction","title":"Calinski Harabasz Pseudo F-Statistic — mlr_measures_clust.ch","text":"measures can retrieved dictionary mlr_measures:","code":"mlr_measures$get(\"clust.ch\") msr(\"clust.ch\")"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_measures_clust.ch.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Calinski Harabasz Pseudo F-Statistic — mlr_measures_clust.ch","text":"Range: \\([0, \\infty)\\) Minimize: FALSE Required predict type: partition","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_measures_clust.dunn.html","id":null,"dir":"Reference","previous_headings":"","what":"Dunn Index — mlr_measures_clust.dunn","title":"Dunn Index — mlr_measures_clust.dunn","text":"score function calls fpc::cluster.stats() package fpc. \"dunn\" used subset output function call.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_measures_clust.dunn.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Dunn Index — mlr_measures_clust.dunn","text":"R6::R6Class() inheriting MeasureClust.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_measures_clust.dunn.html","id":"construction","dir":"Reference","previous_headings":"","what":"Construction","title":"Dunn Index — mlr_measures_clust.dunn","text":"measures can retrieved dictionary mlr_measures:","code":"mlr_measures$get(\"clust.dunn\") msr(\"clust.dunn\")"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_measures_clust.dunn.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Dunn Index — mlr_measures_clust.dunn","text":"Range: \\([0, \\infty)\\) Minimize: FALSE Required predict type: partition","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_measures_clust.silhouette.html","id":null,"dir":"Reference","previous_headings":"","what":"Rousseeuw's Silhouette Quality Index — mlr_measures_clust.silhouette","title":"Rousseeuw's Silhouette Quality Index — mlr_measures_clust.silhouette","text":"score function calls cluster::silhouette() package cluster. \"sil_width\" used subset output function call.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_measures_clust.silhouette.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Rousseeuw's Silhouette Quality Index — mlr_measures_clust.silhouette","text":"R6::R6Class() inheriting MeasureClust.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_measures_clust.silhouette.html","id":"construction","dir":"Reference","previous_headings":"","what":"Construction","title":"Rousseeuw's Silhouette Quality Index — mlr_measures_clust.silhouette","text":"measures can retrieved dictionary mlr_measures:","code":"mlr_measures$get(\"clust.silhouette\") msr(\"clust.silhouette\")"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_measures_clust.silhouette.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Rousseeuw's Silhouette Quality Index — mlr_measures_clust.silhouette","text":"Range: \\([0, \\infty)\\) Minimize: FALSE Required predict type: partition","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_measures_clust.wss.html","id":null,"dir":"Reference","previous_headings":"","what":"Within Sum of Squares — mlr_measures_clust.wss","title":"Within Sum of Squares — mlr_measures_clust.wss","text":"score function calls fpc::cluster.stats() package fpc. \"within.cluster.ss\" used subset output function call.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_measures_clust.wss.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Within Sum of Squares — mlr_measures_clust.wss","text":"R6::R6Class() inheriting MeasureClust.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_measures_clust.wss.html","id":"construction","dir":"Reference","previous_headings":"","what":"Construction","title":"Within Sum of Squares — mlr_measures_clust.wss","text":"measures can retrieved dictionary mlr_measures:","code":"mlr_measures$get(\"clust.wss\") msr(\"clust.wss\")"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_measures_clust.wss.html","id":"meta-information","dir":"Reference","previous_headings":"","what":"Meta Information","title":"Within Sum of Squares — mlr_measures_clust.wss","text":"Range: \\([0, \\infty)\\) Minimize: TRUE Required predict type: partition","code":""},{"path":[]},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_tasks_ruspini.html","id":null,"dir":"Reference","previous_headings":"","what":"Ruspini Cluster Task — mlr_tasks_ruspini","title":"Ruspini Cluster Task — mlr_tasks_ruspini","text":"cluster task cluster::ruspini data set.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_tasks_ruspini.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Ruspini Cluster Task — mlr_tasks_ruspini","text":"R6::R6Class inheriting TaskClust.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_tasks_ruspini.html","id":"source","dir":"Reference","previous_headings":"","what":"Source","title":"Ruspini Cluster Task — mlr_tasks_ruspini","text":"Ruspini EH (1970). “Numerical methods fuzzy clustering.” Information Sciences, 2(3), 319-350. doi:10.1016/S0020-0255(70)80056-1 .","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_tasks_ruspini.html","id":"construction","dir":"Reference","previous_headings":"","what":"Construction","title":"Ruspini Cluster Task — mlr_tasks_ruspini","text":"","code":"mlr_tasks$get(\"ruspini\") tsk(\"ruspini\")"},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_tasks_usarrests.html","id":null,"dir":"Reference","previous_headings":"","what":"US Arrests Cluster Task — mlr_tasks_usarrests","title":"US Arrests Cluster Task — mlr_tasks_usarrests","text":"cluster task datasets::USArrests data set. Rownames stored variable \"states\" column role \"name\".","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_tasks_usarrests.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"US Arrests Cluster Task — mlr_tasks_usarrests","text":"R6::R6Class inheriting TaskClust.","code":""},{"path":"https://mlr3cluster.mlr-org.com/reference/mlr_tasks_usarrests.html","id":"construction","dir":"Reference","previous_headings":"","what":"Construction","title":"US Arrests Cluster Task — mlr_tasks_usarrests","text":"","code":"mlr_tasks$get(\"usarrests\") tsk(\"usarrests\")"},{"path":"https://mlr3cluster.mlr-org.com/news/index.html","id":"mlr3cluster-development-version","dir":"Changelog","previous_headings":"","what":"mlr3cluster (development version)","title":"mlr3cluster (development version)","text":"Add DBSCAN learner ‘fpc’ package","code":""},{"path":"https://mlr3cluster.mlr-org.com/news/index.html","id":"mlr3cluster-018","dir":"Changelog","previous_headings":"","what":"mlr3cluster 0.1.8","title":"mlr3cluster 0.1.8","text":"CRAN release: 2023-03-12 Add new task based ruspini dataset","code":""},{"path":"https://mlr3cluster.mlr-org.com/news/index.html","id":"mlr3cluster-017","dir":"Changelog","previous_headings":"","what":"mlr3cluster 0.1.7","title":"mlr3cluster 0.1.7","text":"CRAN release: 2023-03-10 Replace ‘clusterCrit’ measures alternatives ‘cluster’ ‘fpc’ packages Remove broken unloading test","code":""},{"path":"https://mlr3cluster.mlr-org.com/news/index.html","id":"mlr3cluster-016","dir":"Changelog","previous_headings":"","what":"mlr3cluster 0.1.6","title":"mlr3cluster 0.1.6","text":"CRAN release: 2022-12-22 Add states row names usarrest task. Remove dictionary items unloading package.","code":""},{"path":"https://mlr3cluster.mlr-org.com/news/index.html","id":"mlr3cluster-015","dir":"Changelog","previous_headings":"","what":"mlr3cluster 0.1.5","title":"mlr3cluster 0.1.5","text":"CRAN release: 2022-11-01 Added Mclust learner Fix error associated new dbscan release","code":""},{"path":"https://mlr3cluster.mlr-org.com/news/index.html","id":"mlr3cluster-014","dir":"Changelog","previous_headings":"","what":"mlr3cluster 0.1.4","title":"mlr3cluster 0.1.4","text":"CRAN release: 2022-08-14 code refactoring","code":""},{"path":"https://mlr3cluster.mlr-org.com/news/index.html","id":"mlr3cluster-013","dir":"Changelog","previous_headings":"","what":"mlr3cluster 0.1.3","title":"mlr3cluster 0.1.3","text":"CRAN release: 2022-04-06 code refactoring small fixes add filter PredictionClust","code":""},{"path":"https://mlr3cluster.mlr-org.com/news/index.html","id":"mlr3cluster-012","dir":"Changelog","previous_headings":"","what":"mlr3cluster 0.1.2","title":"mlr3cluster 0.1.2","text":"CRAN release: 2021-09-02 Add Hclust test doc hclust Add within sum squares measure add doc wss code factor adaptions","code":""},{"path":"https://mlr3cluster.mlr-org.com/news/index.html","id":"mlr3cluster-011","dir":"Changelog","previous_headings":"","what":"mlr3cluster 0.1.1","title":"mlr3cluster 0.1.1","text":"CRAN release: 2020-11-15 Eight new learners Added assignments save_assignments fields LearnerClust class","code":""},{"path":"https://mlr3cluster.mlr-org.com/news/index.html","id":"mlr3cluster-010","dir":"Changelog","previous_headings":"","what":"mlr3cluster 0.1.0","title":"mlr3cluster 0.1.0","text":"CRAN release: 2020-10-01 Initial upload CRAN","code":""}]