-
Notifications
You must be signed in to change notification settings - Fork 0
/
cifar10_resnet.py
115 lines (95 loc) · 4.06 KB
/
cifar10_resnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
"""
Adapted from keras example cifar10_cnn.py
Train ResNet-18 on the CIFAR10 small images dataset.
GPU run command with Theano backend (with TensorFlow, the GPU is automatically used):
THEANO_FLAGS=mode=FAST_RUN,device=gpu,floatX=float32 python cifar10.py
"""
from __future__ import print_function
from keras.datasets import cifar10
from keras.preprocessing.image import ImageDataGenerator
from keras.utils import np_utils
from keras.callbacks import ReduceLROnPlateau, CSVLogger, EarlyStopping
import numpy as np
import h5py
from sklearn.cross_validation import train_test_split
import resnet
lr_reducer = ReduceLROnPlateau(monitor='val_loss', factor=np.sqrt(0.1), cooldown=0, patience=5, min_lr=0.5e-6)
early_stopper = EarlyStopping(monitor='val_acc', min_delta=0.001, patience=10)
csv_logger = CSVLogger('resnet18_cifar10.csv')
# batch_size = 32
# nb_classes = 10
# nb_epoch = 200
# data_augmentation = True
#
# # input image dimensions
# img_rows, img_cols = 32, 32
# # The CIFAR10 images are RGB.
# img_channels = 3
#
# # The data, shuffled and split between train and test sets:
# (X_train, y_train), (X_test, y_test) = cifar10.load_data()
nb_channels = 3
img_channels = nb_channels
kernel = 3
rows, cols = 596, 596
img_rows, img_cols = rows, cols
nb_epoch = 2
batch_size = 4
data_augmentation = True
nb_classes = 10
def load_data():
print("loading dataset................")
with h5py.File('dataset.h5', 'r') as hf:
data = hf['dataset'][:]
return data[0].reshape(len(data[0]), nb_channels, rows, cols) , data[1].reshape(len(data[1]), nb_channels, rows, cols)
white, black = load_data()
# white, black = shuffle(white, black, random_state=100)
x_train, x_test, y_train, y_test = train_test_split(white, black, test_size = 0.2, random_state = 100)
# # Convert class vectors to binary class matrices.
# Y_train = np_utils.to_categorical(y_train, nb_classes)
# Y_test = np_utils.to_categorical(y_test, nb_classes)
#
# X_train = X_train.astype('float32')
# X_test = X_test.astype('float32')
#
# # subtract mean and normalize
# mean_image = np.mean(X_train, axis=0)
# X_train -= mean_image
# X_test -= mean_image
# X_train /= 128.
# X_test /= 128.
model = resnet.ResnetBuilder.build_resnet_18((img_channels, img_rows, img_cols), nb_classes)
model.compile(loss='categorical_crossentropy',
optimizer='adam',
metrics=['accuracy'])
if not data_augmentation:
print('Not using data augmentation.')
model.fit(x_train, y_train,
batch_size=batch_size,
nb_epoch=nb_epoch,
validation_data=(x_test, y_test),
shuffle=True,
callbacks=[lr_reducer, early_stopper, csv_logger])
else:
print('Using real-time data augmentation.')
# This will do preprocessing and realtime data augmentation:
datagen = ImageDataGenerator(
featurewise_center=False, # set input mean to 0 over the dataset
samplewise_center=False, # set each sample mean to 0
featurewise_std_normalization=False, # divide inputs by std of the dataset
samplewise_std_normalization=False, # divide each input by its std
zca_whitening=False, # apply ZCA whitening
rotation_range=0, # randomly rotate images in the range (degrees, 0 to 180)
width_shift_range=0.1, # randomly shift images horizontally (fraction of total width)
height_shift_range=0.1, # randomly shift images vertically (fraction of total height)
horizontal_flip=True, # randomly flip images
vertical_flip=False) # randomly flip images
# Compute quantities required for featurewise normalization
# (std, mean, and principal components if ZCA whitening is applied).
datagen.fit(x_train)
# Fit the model on the batches generated by datagen.flow().
model.fit_generator(datagen.flow(x_train, y_train, batch_size=batch_size),
samples_per_epoch=x_train.shape[0],
validation_data=(x_test, y_test),
nb_epoch=nb_epoch, verbose=1, max_q_size=100,
callbacks=[lr_reducer, early_stopper, csv_logger])