forked from igashov/DiffLinker
-
Notifications
You must be signed in to change notification settings - Fork 1
/
compute_metrics.py
451 lines (358 loc) · 13.6 KB
/
compute_metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
#!/usr/bin/env python
import csv
import numpy as np
import pandas as pd
import sys
from networkx.algorithms import isomorphism
from rdkit import Chem
from rdkit.Chem import MolStandardize, QED, rdMolAlign, rdMolDescriptors
from src.delinker_utils import calc_SC_RDKit, frag_utils, sascorer
from src.utils import disable_rdkit_logging
from tqdm import tqdm
from pdb import set_trace
disable_rdkit_logging()
if len(sys.argv) != 9:
print("Not provided all arguments")
quit()
data_set = sys.argv[1] # Options: ZINC, CASF
gen_smi_file = sys.argv[2] # Path to generated molecules
train_set_path = sys.argv[3] # Path to training set
n_cores = int(sys.argv[4]) # Number of cores to use
verbose = bool(sys.argv[5]) # Output results
if sys.argv[6] == "None":
restrict = None
else:
restrict = int(sys.argv[6]) # Set to None if don't want to restrict
pains_smarts_loc = sys.argv[7] # Path to PAINS SMARTS
method = sys.argv[8]
assert method in ['diffusion', '3dlinker', 'delinker']
if verbose:
print("##### Start Settings #####")
print("Data set:", data_set)
print("Generated smiles file:", gen_smi_file)
print("Training set:", train_set_path)
print("Number of cores:", n_cores)
print("Verbose:", verbose)
print("Restrict data:", restrict)
print("PAINS SMARTS location:", pains_smarts_loc)
print("##### End Settings #####")
# Load molecules
# FORMAT: (Starting fragments (SMILES), Original molecule (SMILES), Generated molecule (SMILES), Generated linker)
data = []
with open(gen_smi_file, 'r') as f:
for line in tqdm(f.readlines()):
parts = line.strip().split(' ')
data.append({
'fragments': parts[0],
'true_molecule': parts[1],
'pred_molecule': parts[2],
'pred_linker': parts[3] if len(parts) > 3 else '',
})
if restrict is not None:
data = data[:restrict]
summary = {}
# -------------- Validity -------------- #
def is_valid(pred_mol_smiles, frag_smiles):
pred_mol = Chem.MolFromSmiles(pred_mol_smiles)
frag = Chem.MolFromSmiles(frag_smiles)
if frag is None:
return False
if pred_mol is None:
return False
try:
Chem.SanitizeMol(pred_mol, sanitizeOps=Chem.SanitizeFlags.SANITIZE_PROPERTIES)
except Exception:
return False
if len(pred_mol.GetSubstructMatch(frag)) != frag.GetNumAtoms():
return False
return True
valid_cnt = 0
total_cnt = 0
for obj in tqdm(data):
valid = is_valid(obj['pred_molecule'], obj['fragments'])
obj['valid'] = valid
valid_cnt += valid
total_cnt += 1
validity = valid_cnt / total_cnt * 100
print(f'Validity: {validity:.3f}%')
summary['validity'] = validity
# ----------------- QED ------------------ #
qed_values = []
for obj in tqdm(data):
if not obj['valid']:
obj['qed'] = None
continue
qed = QED.qed(Chem.MolFromSmiles(obj['pred_molecule']))
obj['qed'] = qed
qed_values.append(qed)
print(f'Mean QED: {np.mean(qed_values):.3f}')
summary['qed'] = np.mean(qed_values)
# ----------------- SA ------------------ #
sa_values = []
for obj in tqdm(data):
if not obj['valid']:
obj['sa'] = None
continue
sa = sascorer.calculateScore(Chem.MolFromSmiles(obj['pred_molecule']))
obj['sa'] = sa
sa_values.append(sa)
print(f'Mean SA: {np.mean(sa_values):.3f}')
summary['sa'] = np.mean(sa_values)
# ----------------- Number of Rings ------------------ #
rings_n_values = []
for obj in tqdm(data):
if not obj['valid']:
obj['rings_n'] = None
continue
try:
rings_n = rdMolDescriptors.CalcNumRings(Chem.MolFromSmiles(obj['pred_linker']))
except:
continue
obj['rings_n'] = rings_n
rings_n_values.append(rings_n)
print(f'Mean Number of Rings: {np.mean(rings_n_values):.3f}')
summary['rings_n'] = np.mean(rings_n_values)
# -------------- Uniqueness -------------- #
true2samples = dict()
for obj in tqdm(data):
if not obj['valid']:
continue
true_mol = obj['true_molecule']
true_frags = obj['fragments']
key = f'{true_mol}_{true_frags}'
true2samples.setdefault(key, []).append(obj['pred_molecule'])
unique_cnt = 0
total_cnt = 0
for samples in tqdm(true2samples.values()):
unique_cnt += len(set(samples))
total_cnt += len(samples)
uniqueness = unique_cnt / total_cnt * 100
print(f'Uniqueness: {uniqueness:.3f}%')
summary['uniqueness'] = uniqueness
# ----------------- Novelty ---------------- #
linkers_train = set()
with open(train_set_path, 'r') as f:
for line in f:
linkers_train.add(line.strip())
novel_cnt = 0
total_cnt = 0
for obj in tqdm(data):
if not obj['valid']:
obj['pred_linker_clean'] = None
obj['novel'] = False
continue
try:
linker = Chem.RemoveStereochemistry(obj['pred_linker'])
linker = MolStandardize.canonicalize_tautomer_smiles(Chem.MolToSmiles(linker))
except Exception:
linker = obj['pred_linker']
novel = linker not in linkers_train
obj['pred_linker_clean'] = linker
obj['novel'] = novel
novel_cnt += novel
total_cnt += 1
novelty = novel_cnt / total_cnt * 100
print(f'Novelty: {novelty:.3f}%')
summary['novelty'] = novelty
# ----------------- Recovery ---------------- #
recovered_inputs = set()
all_inputs = set()
for obj in tqdm(data):
if not obj['valid']:
obj['recovered'] = False
continue
key = obj['true_molecule'] + '_' + obj['fragments']
try:
true_mol = Chem.MolFromSmiles(obj['true_molecule'])
Chem.RemoveStereochemistry(true_mol)
true_mol_smi = Chem.MolToSmiles(Chem.RemoveHs(true_mol))
except:
true_mol = Chem.MolFromSmiles(obj['true_molecule'], sanitize=False)
Chem.RemoveStereochemistry(true_mol)
true_mol_smi = Chem.MolToSmiles(Chem.RemoveHs(true_mol, sanitize=False))
pred_mol = Chem.MolFromSmiles(obj['pred_molecule'])
Chem.RemoveStereochemistry(pred_mol)
pred_mol_smi = Chem.MolToSmiles(Chem.RemoveHs(pred_mol))
recovered = true_mol_smi == pred_mol_smi
obj['recovered'] = recovered
if recovered:
recovered_inputs.add(key)
all_inputs.add(key)
recovery = len(recovered_inputs) / len(all_inputs) * 100
print(f'Recovery: {recovery:.3f}%')
summary['recovery'] = recovery
# ----------------- PAINS Filter ---------------- #
def check_pains(mol, pains):
for pain in pains:
if mol.HasSubstructMatch(pain):
return False
return True
with open(pains_smarts_loc, 'r') as f:
pains_smarts = [Chem.MolFromSmarts(line[0], mergeHs=True) for line in csv.reader(f)]
pains_smarts = set(pains_smarts)
passed_pains_cnt = 0
total_cnt = 0
for obj in tqdm(data):
if not obj['valid']:
obj['passed_pains'] = False
continue
pred_mol = Chem.MolFromSmiles(obj['pred_molecule'])
passed_pains = check_pains(pred_mol, pains_smarts)
obj['passed_pains'] = passed_pains
passed_pains_cnt += passed_pains
total_cnt += 1
pains_score = passed_pains_cnt / total_cnt * 100
print(f'Passed PAINS: {pains_score:.3f}%')
summary['pains'] = pains_score
# ----------------- RA Filter ---------------- #
def check_ring_filter(linker):
check = True
ssr = Chem.GetSymmSSSR(linker)
for ring in ssr:
for atom_idx in ring:
for bond in linker.GetAtomWithIdx(atom_idx).GetBonds():
if bond.GetBondType() == 2 and bond.GetBeginAtomIdx() in ring and bond.GetEndAtomIdx() in ring:
check = False
return check
passed_ring_filter_cnt = 0
total_cnt = 0
for obj in tqdm(data):
if not obj['valid']:
obj['passed_ring_filter'] = False
continue
pred_linker = Chem.MolFromSmiles(obj['pred_linker'], sanitize=False)
try:
passed_ring_filter = check_ring_filter(pred_linker)
except:
obj['passed_ring_filter'] = False
continue
obj['passed_ring_filter'] = passed_ring_filter
passed_ring_filter_cnt += passed_ring_filter
total_cnt += 1
ra_score = passed_ring_filter_cnt / total_cnt * 100
print(f'Passed Ring Filter: {ra_score:.3f}%')
summary['ra'] = ra_score
# ---------------------------- Saving -------------------------------- #
out_path = gen_smi_file[:-3] + 'csv'
table = pd.DataFrame(data)
table.to_csv(out_path, index=False)
summary_path = gen_smi_file[:-4] + '_summary.csv'
summary_table = pd.DataFrame([summary])
summary_table.to_csv(summary_path, index=False)
# ----------------------- RMSD --------------------- #
sdf_path = gen_smi_file[:-3] + 'sdf'
pred_mol_3d = Chem.SDMolSupplier(sdf_path)
if method == 'diffusion' and data_set == 'ZINC':
# Use SMILES of test set generated for molecules processed by OpenBabel
# (for consistency with other evaluation metrics)
# Because SMILES produced by our model are also based on OpenBabel
true_smi_path = 'datasets/zinc_final_test_smiles.smi'
true_mol_path = 'datasets/zinc_final_test_molecules.sdf'
true_smi = pd.read_csv(true_smi_path, sep=' ', names=['mol', 'frag']).mol.values
true_mol_3d = Chem.SDMolSupplier(true_mol_path)
true_smi2mol3d = dict(zip(true_smi, true_mol_3d))
elif method == 'diffusion' and data_set == 'CASF':
# Use SMILES of test set generated for molecules processed by OpenBabel
# (for consistency with other evaluation metrics)
# Because SMILES produced by our model are also based on OpenBabel
true_smi_path = 'datasets/casf_final_test_smiles.smi'
true_mol_path = 'datasets/casf_final_test_molecules.sdf'
true_smi = pd.read_csv(true_smi_path, sep=' ', names=['mol', 'frag']).mol.values
true_mol_3d = Chem.SDMolSupplier(true_mol_path)
true_smi2mol3d = dict(zip(true_smi, true_mol_3d))
elif method == 'diffusion' and data_set == 'GEOM':
# Use SMILES of test set generated for molecules processed by OpenBabel
# (for consistency with other evaluation metrics)
# Because SMILES produced by our model are also based on OpenBabel
true_smi_path = 'datasets/geom_multifrag_test_smiles.smi'
true_mol_path = 'datasets/geom_multifrag_test_molecules.sdf'
true_smi = pd.read_csv(true_smi_path, sep=' ', names=['mol', 'frag']).mol.values
true_mol_3d = Chem.SDMolSupplier(true_mol_path)
true_smi2mol3d = dict(zip(true_smi, true_mol_3d))
elif method == 'diffusion' and data_set == 'MOAD':
# Use SMILES of test set generated for molecules processed by OpenBabel
# (for consistency with other evaluation metrics)
# Because SMILES produced by our model are also based on OpenBabel
true_smi_path = 'datasets/MOAD_test_smiles.smi'
true_mol_path = 'datasets/MOAD_test_molecules.sdf'
true_smi = pd.read_csv(true_smi_path, sep=' ', names=['mol', 'frag']).mol.values
true_mol_3d = Chem.SDMolSupplier(true_mol_path)
true_smi2mol3d = dict(zip(true_smi, true_mol_3d))
else:
raise NotImplementedError
def find_exit(mol, num_frag):
neighbors = []
for atom_idx in range(num_frag, mol.GetNumAtoms()):
N = mol.GetAtoms()[atom_idx].GetNeighbors()
for n in N:
if n.GetIdx() < num_frag:
neighbors.append(n.GetIdx())
return neighbors
rmsd_list = []
for i, (obj, pred) in tqdm(enumerate(zip(data, pred_mol_3d)), total=len(data)):
obj['rmsd'] = None
if not obj['recovered']:
continue
true = true_smi2mol3d[obj['true_molecule']]
Chem.RemoveStereochemistry(true)
true = Chem.RemoveHs(true)
Chem.RemoveStereochemistry(pred)
pred = Chem.RemoveHs(pred)
G1 = frag_utils.topology_from_rdkit(pred)
G2 = frag_utils.topology_from_rdkit(true)
GM = isomorphism.GraphMatcher(G1, G2)
flag = GM.is_isomorphic()
frag_size = Chem.MolFromSmiles(obj['fragments']).GetNumAtoms()
# exits = find_exit(pred, frag_size)
# if flag and len(exits) == 2:
if flag:
error = Chem.rdMolAlign.GetBestRMS(pred, true)
# try:
# error = Chem.rdMolAlign.GetBestRMS(pred, true)
# except:
# set_trace()
num_linker = pred.GetNumAtoms() - frag_size
num_atoms = pred.GetNumAtoms()
error *= np.sqrt(num_atoms / num_linker) # only count rmsd on linker
rmsd_list.append(error)
obj['rmsd'] = error
rmsd_score = np.mean(rmsd_list)
print(f'Mean RMSD: {rmsd_score:.3f}')
summary['rmsd'] = rmsd_score
# ----------------------------- SC-RDKit -------------------------- #
def calc_sc_rdkit_full_mol(gen_mol, ref_mol):
try:
_ = rdMolAlign.GetO3A(gen_mol, ref_mol).Align()
sc_score = calc_SC_RDKit.calc_SC_RDKit_score(gen_mol, ref_mol)
return sc_score
except:
return -0.5
sc_rdkit_list = []
for i, (obj, pred) in tqdm(enumerate(zip(data, pred_mol_3d)), total=len(data)):
obj['sc_rdkit'] = None
if not obj['valid']:
continue
true = true_smi2mol3d[obj['true_molecule']]
score = calc_sc_rdkit_full_mol(pred, true)
sc_rdkit_list.append(score)
obj['sc_rdkit'] = score
sc_rdkit_list = np.array(sc_rdkit_list)
sc_rdkit_7 = (sc_rdkit_list > 0.7).sum() / len(sc_rdkit_list) * 100
sc_rdkit_8 = (sc_rdkit_list > 0.8).sum() / len(sc_rdkit_list) * 100
sc_rdkit_9 = (sc_rdkit_list > 0.9).sum() / len(sc_rdkit_list) * 100
sc_rdkit_mean = np.mean(sc_rdkit_list)
print(f'SC_RDKit > 0.7: {sc_rdkit_7:3f}%')
print(f'SC_RDKit > 0.8: {sc_rdkit_8:3f}%')
print(f'SC_RDKit > 0.9: {sc_rdkit_9:3f}%')
print(f'Mean SC_RDKit: {sc_rdkit_mean}')
summary['sc_rdkit_7'] = sc_rdkit_7
summary['sc_rdkit_8'] = sc_rdkit_8
summary['sc_rdkit_9'] = sc_rdkit_9
summary['sc_rdkit_mean'] = sc_rdkit_mean
# ---------------------------- Saving -------------------------------- #
out_path = gen_smi_file[:-3] + 'csv'
table = pd.DataFrame(data)
table.to_csv(out_path, index=False)
summary_path = gen_smi_file[:-4] + '_summary.csv'
summary_table = pd.DataFrame([summary])
summary_table.to_csv(summary_path, index=False)