-
Notifications
You must be signed in to change notification settings - Fork 0
/
metrics.py
125 lines (106 loc) · 4.38 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import numpy as np
import torch
from skimage import measure
class mIoU():
def __init__(self):
super(mIoU, self).__init__()
self.reset()
def update(self, preds, labels):
correct, labeled = batch_pix_accuracy(preds, labels)
inter, union = batch_intersection_union(preds, labels)
self.total_correct += correct
self.total_label += labeled
self.total_inter += inter
self.total_union += union
def get(self):
pixAcc = 1.0 * self.total_correct / (np.spacing(1) + self.total_label)
IoU = 1.0 * self.total_inter / (np.spacing(1) + self.total_union)
mIoU = IoU.mean()
if IoU == mIoU:
print('相等')
else:
print('不等')
return float(pixAcc), mIoU
def reset(self):
self.total_inter = 0
self.total_union = 0
self.total_correct = 0
self.total_label = 0
class PD_FA():
def __init__(self,):
super(PD_FA, self).__init__()
self.image_area_total = []
self.image_area_match = []
self.dismatch_pixel = 0
self.all_pixel = 0
self.PD = 0
self.target= 0
def update(self, preds, labels, size):
predits = np.array((preds).cpu()).astype('int64')
labelss = np.array((labels).cpu()).astype('int64')
image = measure.label(predits, connectivity=2)
coord_image = measure.regionprops(image)
label = measure.label(labelss , connectivity=2)
coord_label = measure.regionprops(label)
self.target += len(coord_label)
self.image_area_total = []
self.image_area_match = []
self.distance_match = []
self.dismatch = []
for K in range(len(coord_image)):
area_image = np.array(coord_image[K].area)
self.image_area_total.append(area_image)
for i in range(len(coord_label)):
centroid_label = np.array(list(coord_label[i].centroid))
for m in range(len(coord_image)):
centroid_image = np.array(list(coord_image[m].centroid))
distance = np.linalg.norm(centroid_image - centroid_label)
area_image = np.array(coord_image[m].area)
if distance < 3:
self.distance_match.append(distance)
self.image_area_match.append(area_image)
del coord_image[m]
break
self.dismatch = [x for x in self.image_area_total if x not in self.image_area_match]
self.dismatch_pixel +=np.sum(self.dismatch)
self.all_pixel +=size[0]*size[1]
self.PD +=len(self.distance_match)
def get(self):
Final_FA = self.dismatch_pixel / self.all_pixel
Final_PD = self.PD /self.target
return Final_PD, float(Final_FA.cpu().detach().numpy())
def reset(self):
self.FA = np.zeros([self.bins+1])
self.PD = np.zeros([self.bins+1])
def batch_pix_accuracy(output, target):
if len(target.shape) == 3:
target = np.expand_dims(target.float(), axis=1)
elif len(target.shape) == 4:
target = target.float()
else:
raise ValueError("Unknown target dimension")
assert output.shape == target.shape, "Predict and Label Shape Don't Match"
predict = (output > 0).float()
pixel_labeled = (target > 0).float().sum()
pixel_correct = (((predict == target).float())*((target > 0)).float()).sum()
assert pixel_correct <= pixel_labeled, "Correct area should be smaller than Labeled"
return pixel_correct, pixel_labeled
def batch_intersection_union(output, target):
mini = 1
maxi = 1
nbins = 1
predict = (output > 0).float()
if len(target.shape) == 3:
target = np.expand_dims(target.float(), axis=1)
elif len(target.shape) == 4:
target = target.float()
else:
raise ValueError("Unknown target dimension")
intersection = predict * ((predict == target).float())
area_inter, _ = np.histogram(intersection.cpu(), bins=nbins, range=(mini, maxi))
area_pred, _ = np.histogram(predict.cpu(), bins=nbins, range=(mini, maxi))
area_lab, _ = np.histogram(target.cpu(), bins=nbins, range=(mini, maxi))
area_union = area_pred + area_lab - area_inter
assert (area_inter <= area_union).all(), \
"Error: Intersection area should be smaller than Union area"
return area_inter, area_union