-
Notifications
You must be signed in to change notification settings - Fork 10
/
train_model_distributed.py
222 lines (189 loc) · 8.46 KB
/
train_model_distributed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import pickle
from torchvision import datasets, models, transforms
import segmentation_models_pytorch as smp
from PIL import Image
import numpy as np
import torch
from torch import nn
from torch.nn import functional as F
from torch.utils.data import DataLoader
from torchvision import transforms
import pytorch_lightning as pl
from pytorch_lightning.metrics.functional.classification import accuracy
from pytorch_lightning.metrics.functional.classification import f1_score
import itertools
from pytorch_lightning.callbacks import ModelCheckpoint
import imgaug as ia
import imgaug.augmenters as iaa
import os
from pandas.core.common import flatten
img_paths_train = []
mask_paths_train = []
img_labels_train = []
all_paths_dir = 'blend_dataset/'
all_paths_filenames = []
for root, dirs, files in os.walk(all_paths_dir):
for file in files:
if file.endswith(".pkl"):
all_paths_filenames.append(os.path.join(root, file))
img_paths_train = []
mask_paths_train = []
img_labels_train = []
for train_path in all_paths_filenames[:-1]:
with open(train_path, 'rb') as alp:
all_paths_splits = pickle.load(alp)
img_paths_train.append(all_paths_splits['image paths'])
mask_paths_train.append(all_paths_splits['mask paths'])
img_labels_train.append(all_paths_splits['image labels'])
img_paths_train = list(flatten(img_paths_train))
mask_paths_train = list(flatten(mask_paths_train))
img_labels_train = list(flatten(img_labels_train))
with open(all_paths_filenames[-1], 'rb') as alp:
all_paths_splits = pickle.load(alp)
img_paths_valid = all_paths_splits['image paths']
mask_paths_valid = all_paths_splits['mask paths']
img_labels_valid = all_paths_splits['image labels']
print("Total training samples : ", len(img_paths_train))
print("Total validation samples : ", len(img_paths_valid))
class Dataset(torch.utils.data.Dataset):
'Characterizes a dataset for PyTorch'
def __init__(self, img_paths, mask_paths, img_labels):
'Initialization'
self.img_paths = img_paths
self.mask_paths = mask_paths
self.img_labels = img_labels
self.transform_img = transforms.Compose([
transforms.Resize((528,528)),
#transforms.CenterCrop(528),
transforms.ColorJitter(hue=.05, saturation=.05),
transforms.RandomHorizontalFlip(),
transforms.RandomRotation(20, resample=Image.BILINEAR),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
self.transform_mask = transforms.Compose([
transforms.Resize((528,528)),
#transforms.CenterCrop(528),
transforms.ToTensor(),
transforms.Normalize([0.456], [0.224])
])
def __len__(self):
'Denotes the total number of samples'
return len(self.img_labels)
def __getitem__(self, index):
'Generates one sample of data'
image = self.transform_img(Image.open(self.img_paths[index]))
mask = self.transform_mask(Image.open(self.mask_paths[index]).convert('L'))
if self.img_labels[index] == 'fake':
value = 1
else:
value = 0
return image, mask, value
train_dataset = Dataset(img_paths_train, mask_paths_train, img_labels_train)
valid_dataset = Dataset(img_paths_valid, mask_paths_valid, img_labels_valid)
train = DataLoader(train_dataset, batch_size=6, num_workers=os.cpu_count(),
drop_last=True)
valid = DataLoader(valid_dataset, batch_size=6, num_workers=os.cpu_count(),
drop_last=True)
class Classifier(pl.LightningModule):
def __init__(self):
super().__init__()
# Resnet config
aux_params=dict(
pooling='max', # one of 'avg', 'max'
dropout=0.5, # dropout ratio, default is None
activation='sigmoid', # activation function, default is None
classes=1, # define number of output labels
)
self.model = smp.DeepLabV3Plus(encoder_name="efficientnet-b6", encoder_weights="imagenet", in_channels=3, classes=1, aux_params=aux_params)
def forward(self, image):
output_mask, output_target = self.model(image)
return output_mask, output_target
def training_step(self, batch, batch_idx):
image, mask, target = batch
output_mask, output_target = self.model(image) #F.interpolate(self.resnet(image), size=64)
mask_loss = F.mse_loss(output_mask, mask)
#bce_loss = nn.BCEWithLogitsLoss()
class_loss = F.binary_cross_entropy_with_logits(output_target.squeeze(), target.type(torch.DoubleTensor).cuda())
loss = mask_loss + class_loss
result_dict = {
'class_loss': class_loss,
'mask_loss': mask_loss,
'predictions': output_target.squeeze(),
'targets': target,
'total_loss': loss
}
return {'loss': loss, 'result': result_dict}
def validation_step(self, batch, batch_idx):
image, mask, target = batch
output_mask, output_target = self.model(image) #F.interpolate(self.resnet(image), size=64)
mask_loss = F.mse_loss(output_mask, mask)
#print('Mask Loss:', mask_loss)
class_loss = F.binary_cross_entropy_with_logits(output_target.squeeze(), target.type(torch.DoubleTensor).cuda())
loss = mask_loss + class_loss
result_dict = {
'class_loss': class_loss,
'mask_loss': mask_loss,
'predictions': output_target.squeeze(),
'targets': target,
'total_loss': loss
}
return result_dict
def training_epoch_end(self, train_outputs):
'''
Log all the values after the end of the epoch.
'''
outputs = [x['result'] for x in train_outputs]
avg_class_loss = torch.stack([x['class_loss'] for x in outputs]).mean()
avg_mask_loss = torch.stack([x['mask_loss'] for x in outputs]).mean()
avg_loss = torch.stack([x['total_loss'] for x in outputs]).mean()
all_predictions = torch.stack(
[x['predictions'] for x in outputs]).flatten()
all_targets = torch.stack([x['targets'] for x in outputs]).flatten()
class_accuracy = accuracy(all_predictions, all_targets, num_classes=2)
class_f1 = f1_score(all_predictions, all_targets, num_classes=2)
self.log('train_class_loss', avg_class_loss, sync_dist=True)
self.log('train_mask_loss', avg_mask_loss, sync_dist=True)
self.log('train_loss', avg_loss, sync_dist=True)
self.log('train_accuracy', class_accuracy, prog_bar=True, sync_dist=True)
self.log('train_f1', class_f1, sync_dist=True)
def validation_epoch_end(self, outputs):
'''
Log all the values after the end of the epoch.
'''
avg_class_loss = torch.stack([x['class_loss'] for x in outputs]).mean()
avg_mask_loss = torch.stack([x['mask_loss'] for x in outputs]).mean()
avg_loss = torch.stack([x['total_loss'] for x in outputs]).mean()
all_predictions = torch.stack(
[x['predictions'] for x in outputs]).flatten()
all_targets = torch.stack([x['targets'] for x in outputs]).flatten()
class_accuracy = accuracy(all_predictions, all_targets, num_classes=2)
class_f1 = f1_score(all_predictions, all_targets, num_classes=2)
self.log('valid_class_loss', avg_class_loss, sync_dist=True)
self.log('valid_mask_loss', avg_mask_loss, sync_dist=True)
self.log('valid_loss', avg_loss, sync_dist=True)
self.log('valid_accuracy', class_accuracy, prog_bar=True, sync_dist=True)
self.log('valid_f1', class_f1, sync_dist=True)
def configure_optimizers(self):
optimizer = torch.optim.Adam(self.parameters(), lr=1e-3)
scheduler = torch.optim.lr_scheduler.CyclicLR(
optimizer,
base_lr=1e-4,
max_lr=1e-3,
step_size_up=3000,
step_size_down=3000,
mode='triangular2',
cycle_momentum=False
)
return [optimizer], [scheduler]
# init model
model = Classifier()
checkpoint_callback = ModelCheckpoint(
monitor='valid_loss', dirpath='checkpoints/')
# Initialize a trainer
trainer = pl.Trainer(gpus=8, accelerator='ddp', max_epochs=15, progress_bar_refresh_rate=20,
precision=16, callbacks=[checkpoint_callback])
# Train the model ⚡
trainer.fit(model, train, valid)
#Save and checkpoint
trainer.save_checkpoint("final_model.ckpt")