description | keywords | title |
---|---|---|
Deploy services to a swarm |
guide, swarm mode, swarm, service |
Deploy services to a swarm |
When you are running Docker Engine in swarm mode, you run
docker service create
to deploy your application in the swarm. The swarm
manager accepts the service description as the desired state for your
application. The built-in swarm orchestrator and scheduler deploy your
application to nodes in your swarm to achieve and maintain the desired state.
For an overview of how services work, refer to How services work.
This guide assumes you are working with the Docker Engine running in swarm
mode. You must run all docker service
commands from a manager node.
If you haven't already, read through Swarm mode key concepts and How services work.
To create the simplest type of service in a swarm, you only need to supply a container image:
$ docker service create <IMAGE>
The swarm orchestrator schedules one task on an available node. The task invokes a container based upon the image. For example, you could run the following command to create a service of one instance of an nginx web server:
$ docker service create --name my_web nginx
anixjtol6wdfn6yylbkrbj2nx
In this example the --name
flag names the service my_web
.
To list the service, run docker service ls
from a manager node:
$ docker service ls
ID NAME REPLICAS IMAGE COMMAND
anixjtol6wdf my_web 1/1 nginx
To make the web server accessible from outside the swarm, you need to publish the port where the swarm listens for web requests.
You can include a command to run inside containers after the image:
$ docker service create <IMAGE> <COMMAND>
For example to start an alpine
image that runs ping docker.com
:
$ docker service create --name helloworld alpine ping docker.com
9uk4639qpg7npwf3fn2aasksr
When you create a service, you can specify many different configuration options
and constraints. See the output of docker service create --help
for a full
listing of them. Some common configuration options are described below.
Created services do not always run right away. A service can be in a pending state if its image is unavailable, no node meets the requirements you configure for the service, or other reasons. See Pending services for more information.
You can configure the following options for the runtime environment in the container:
- environment variables using the
--env
flag - the working directory inside the container using the
--workdir
flag - the username or UID using the
--user
flag
For example:
$ docker service create --name helloworld \
--env MYVAR=myvalue \
--workdir /tmp \
--user my_user \
alpine ping docker.com
9uk4639qpg7npwf3fn2aasksr
To create a service with access to Docker-managed secrets, use the --secret
flag. For more information, see
Manage sensitive strings (secrets) for Docker services
When you create a service without specifying any details about the version of
the image to use, the service uses the version tagged with the latest
tag.
You can force the service to use a specific version of the image in a few
different ways, depending on your desired outcome.
An image version can be expressed in several different ways:
-
If you specify a tag, the manager (or the Docker client, if you use content trust) resolves that tag to a digest. When the request to create a container task is received on a worker node, the worker node only sees the digest, not the tag.
$ docker service create --name="myservice" ubuntu:16.04
Some tags represent discrete releases, such as
ubuntu:16.04
. Tags like this will almost always resolve to a stable digest over time. It is recommended that you use this kind of tag when possible.Other types of tags, such as
latest
ornightly
, may resolve to a new digest often, depending on how often an image's author updates the tag. It is not recommended to run services using a tag which is updated frequently, to prevent different service replica tasks from using different image versions. -
If you don't specify a version at all, by convention the image's
latest
tag is resolved to a digest. Workers use the image at this digest when creating the service task.Thus, the following two commands are equivalent:
$ docker service create --name="myservice" ubuntu $ docker service create --name="myservice" ubuntu:latest
-
If you specify a digest directly, that exact version of the image is always used when creating service tasks.
$ docker service create \ --name="myservice" \ ubuntu:16.04@sha256:35bc48a1ca97c3971611dc4662d08d131869daa692acb281c7e9e052924e38b1
When you create a service, the image's tag is resolved to the specific digest
the tag points to at the time of service creation. Worker nodes for that
service will use that specific digest forever unless the service is explicitly
updated. This feature is particularly important if you do use often-changing tags
such as latest
, because it ensures that all service tasks use the same version
of the image.
Note: If content trust is enabled, the client actually resolves the image's tag to a digest before contacting the swarm manager, in order to verify that the image is signed. Thus, if you use content trust, the swarm manager receives the request pre-resolved. In this case, if the client cannot resolve the image to a digest, the request fails. {: id="image_resolution_with_trust" }
If the manager is not able to resolve the tag to a digest, each worker node is responsible for resolving the tag to a digest, and different nodes may use different versions of the image. If this happens, a warning like the following will be logged, substituting the placeholders for real information.
unable to pin image <IMAGE-NAME> to digest: <REASON>
To see an image's current digest, issue the command
docker inspect <IMAGE>:<TAG>
and look for the RepoDigests
line. The
following is the current digest for ubuntu:latest
at the time this content
was written. The output is truncated for clarity.
$ docker inspect ubuntu:latest
"RepoDigests": [
"ubuntu@sha256:35bc48a1ca97c3971611dc4662d08d131869daa692acb281c7e9e052924e38b1"
],
After you create a service, its image is never updated unless you explicitly run
docker service update
with the --image
flag as described below. Other update
operations such as scaling the service, adding or removing networks or volumes,
renaming the service, or any other type of update operation do not update the
service's image.
Each tag represents a digest, similar to a Git hash. Some tags, such as
latest
, are updated often to point to a new digest. Others, such as
ubuntu:16.04
, represent a released software version and are not expected to
update to point to a new digest often if at all. In Docker 1.13 and higher, when
you create a service, it is constrained to create tasks using a specific digest
of an image until you update the service using service update
with the
--image
flag. If you use an older version of Docker Engine, you must remove
and re-create the service to update its image.
When you run service update
with the --image
flag, the swarm manager queries
Docker Hub or your private Docker registry for the digest the tag currently
points to and updates the service tasks to use that digest.
Note: If you use content trust, the Docker client resolves image and the swarm manager receives the image and digest, rather than a tag.
Usually, the manager is able to resolve the tag to a new digest and the service updates, redeploying each task to use the new image. If the manager is unable to resolve the tag or some other problem occurs, the next two sections outline what to expect.
If the swarm manager can resolve the image tag to a digest, it instructs the worker nodes to redeploy the tasks and use the image at that digest.
-
If a worker has cached the image at that digest, it uses it.
-
If not, it attempts to pull the image from Docker Hub or the private registry.
-
If it succeeds, the task is deployed using the new image.
-
If the worker fails to pull the image, the service fails to deploy on that worker node. Docker tries again to deploy the task, possibly on a different worker node.
-
If the swarm manager cannot resolve the image to a digest, all is not lost:
-
The manager instructs the worker nodes to redeploy the tasks using the image at that tag.
-
If the worker has a locally cached image that resolves to that tag, it uses that image.
-
If the worker does not have a locally cached image that resolves to the tag, the worker tries to connect to Docker Hub or the private registry to pull the image at that tag.
-
If this succeeds, the worker uses that image.
-
If this fails, the task fails to deploy and the manager tries again to deploy the task, possibly on a different worker node.
-
Swarm mode has two types of services, replicated and global. For replicated services, you specify the number of replica tasks for the swarm manager to schedule onto available nodes. For global services, the scheduler places one task on each available node.
You control the type of service using the --mode
flag. If you don't specify a
mode, the service defaults to replicated
. For replicated services, you specify
the number of replica tasks you want to start using the --replicas
flag. For
example, to start a replicated nginx service with 3 replica tasks:
$ docker service create \
--name my_web \
--replicas 3 \
nginx
To start a global service on each available node, pass --mode global
to
docker service create
. Every time a new node becomes available, the scheduler
places a task for the global service on the new node. For example to start a
service that runs alpine on every node in the swarm:
$ docker service create \
--name myservice \
--mode global \
alpine top
Service constraints let you set criteria for a node to meet before the scheduler
deploys a service to the node. You can apply constraints to the
service based upon node attributes and metadata or engine metadata. For more
information on constraints, refer to the docker service create
CLI reference.
To reserve a given amount of memory or number of CPUs for a service, use the
--reserve-memory
or --reserve-cpu
flags. If no available nodes can satisfy
the requirement (for instance, if you request 4 CPUs and no node in the swarm
has 4 CPUs), the service remains in a pending state until a node is available to
run its tasks.
Swarm mode lets you network services in a couple of ways:
- publish ports externally to the swarm using ingress networking or directly on each swarm node
- connect services and tasks within the swarm using overlay networks
When you create a swarm service, you can publish that service's ports to hosts outside the swarm in two ways:
-
[You can rely on the routing mesh](#publish-a services-ports-using-the-routing-mesh). When you publish a service port, the swarm makes the service accessible at the target port on every node, regardless of whether there is a task for the service running on that node or not. This is less complex and is the right choice for many types of services.
-
You can publish a service task's port directly on the swarm node where that service is running. This feature is available in Docker 1.13 and higher. This bypasses the routing mesh and provides the maximum flexibility, including the ability for you to develop your own routing framework. However, you are responsible for keeping track of where each task is running and routing requests to the tasks, and load-balancing across the nodes.
Keep reading for more information and use cases for each of these methods.
To publish a service's ports externally to the swarm, use the --publish <TARGET-PORT>:<SERVICE-PORT>
flag. The swarm
makes the service accessible at the target port on every swarm node. If an
external host connects to that port on any swarm node, the routing mesh routes
it to a task. The external host does not need to know the IP addresses or
internally-used ports of the service tasks to interact with the service. When
a user or process connects to a service, any worker node running a service task
may respond.
Imagine that you have a 10-node swarm, and you deploy an Nginx service running three tasks on a 10-node swarm:
$ docker service create --name my_web \
--replicas 3 \
--publish 8080:80 \
nginx
Three tasks will run on up to three nodes. You don't need to know which nodes
are running the tasks; connecting to port 8080 on any of the 10 nodes will
connect you to one of the three nginx
tasks. You can test this using curl
(the HTML output is truncated):
$ curl localhost:8080
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
...truncated...
</html>
Subsequent connections may be routed to the same swarm node or a different one.
Using the routing mesh may not be the right choice for your application if you
need to make routing decisions based on application state or you need total
control of the process for routing requests to your service's tasks. To publish
a service's port directly on the node where it is running, use the mode=host
option to the --publish
flag.
Note: If you publish a service's ports directly on the swarm node using
mode=host
and also setpublished=<PORT>
this creates an implicit limitation that you can only run one task for that service on a given swarm node. In addition, if you usemode=host
and you do not use the--mode=global
flag ondocker service create
, it will be difficult to know which nodes are running the service in order to route work to them.
Google cAdvisor is a tool for monitoring Linux hosts which run containers. Typically, cAdvisor is run as a stand-alone container, because it is designed to monitor a given Docker Engine instance. If you run cAdvisor as a service using the routing mesh, connecting to the cAdvisor port on any swarm node will show you the statistics for (effectively) a random swarm node running the service. This is probably not what you want.
The following example runs cAdvisor as a service on each node in your swarm and exposes cAdvisor port locally on each swarm node. Connecting to the cAdvisor port on a given node will show you that node's statistics. In practice, this is similar to running a single stand-alone cAdvisor container on each node, but without the need to manually administer those containers.
$ docker service create \
--mode global \
--mount type=bind,source=/,destination=/rootfs,ro=1 \
--mount type=bind,source=/var/run,destination=/var/run \
--mount type=bind,source=/sys,destination=/sys,ro=1 \
--mount type=bind,source=/var/lib/docker/,destination=/var/lib/docker,ro=1 \
--publish mode=host,target=8080,published=8080 \
--name=cadvisor \
google/cadvisor:latest
You can reach cAdvisor on port 8080 of every swarm node. If you add a node to the swarm, a cAdvisor task will be started on it. You cannot start another service or container on any swarm node which binds to port 8080.
Note: This is a naive example that works well for system monitoring applications and similar types of software. Creating an application-layer routing framework for a multi-tiered service is complex and out of scope for this topic.
Use overlay networks to connect one or more services within the swarm.
First, create an overlay network on a manager node the docker network create
command:
$ docker network create --driver overlay my-network
etjpu59cykrptrgw0z0hk5snf
After you create an overlay network in swarm mode, all manager nodes have access to the network.
When you create a service and pass the --network
flag to attach the service to
the overlay network:
$ docker service create \
--replicas 3 \
--network my-network \
--name my-web \
nginx
716thylsndqma81j6kkkb5aus
The swarm extends my-network
to each node running the service.
For more information on overlay networking and service discovery, refer to Attach services to an overlay network. See also Docker swarm mode overlay network security model.
When you create a service, you can specify a rolling update behavior for how the
swarm should apply changes to the service when you run docker service update
.
You can also specify these flags as part of the update, as arguments to
docker service update
.
The --update-delay
flag configures the time delay between updates to a service
task or sets of tasks. You can describe the time T
as a combination of the
number of seconds Ts
, minutes Tm
, or hours Th
. So 10m30s
indicates a 10
minute 30 second delay.
By default the scheduler updates 1 task at a time. You can pass the
--update-parallelism
flag to configure the maximum number of service tasks
that the scheduler updates simultaneously.
When an update to an individual task returns a state of RUNNING
, the scheduler
continues the update by continuing to another task until all tasks are updated.
If, at any time during an update a task returns FAILED
, the scheduler pauses
the update. You can control the behavior using the --update-failure-action
flag for docker service create
or docker service update
.
In the example service below, the scheduler applies updates to a maximum of 2
replicas at a time. When an updated task returns either RUNNING
or FAILED
,
the scheduler waits 10 seconds before stopping the next task to update:
$ docker service create \
--replicas 10 \
--name my_web \
--update-delay 10s \
--update-parallelism 2 \
--update-failure-action continue \
alpine
0u6a4s31ybk7yw2wyvtikmu50
The --update-max-failure-ratio
flag controls what fraction of tasks can fail
during an update before the update as a whole is considered to have failed. For
example, with --update-max-failure-ratio 0.1 --update-failure-action pause
,
after 10% of the tasks being updated fail, the update will be paused.
An individual task update is considered to have failed if the task doesn't
start up, or if it stops running within the monitoring period specified with
the --update-monitor
flag. The default value for --update-monitor
is 30
seconds, which means that a task failing in the first 30 seconds after its
started counts towards the service update failure threshold, and a failure
after that is not counted.
In case the updated version of a service doesn't function as expected, it's
possible to roll back to the previous version of the service using
docker service update
's --rollback
flag. This will revert the service
to the configuration that was in place before the most recent
docker service update
command.
Other options can be combined with --rollback
; for example,
--update-delay 0s
to execute the rollback without a delay between tasks:
$ docker service update \
--rollback \
--update-delay 0s
my_web
my_web
You can create two types of mounts for services in a swarm, volume
mounts or
bind
mounts. You pass the --mount
flag when you create a service. The
default is a volume mount if you don't specify a type.
- Volumes are storage that remain alive after a container for a task has been removed. The preferred method to mount volumes is to leverage an existing volume:
$ docker service create \
--mount src=<VOLUME-NAME>,dst=<CONTAINER-PATH> \
--name myservice \
<IMAGE>
For more information on how to create a volume, see the volume create
CLI reference.
The following method creates the volume at deployment time when the scheduler dispatches a task, just before the starting the container:
$ docker service create \
--mount type=volume,src=<VOLUME-NAME>,dst=<CONTAINER-PATH>,volume-driver=<DRIVER>,volume-opt=<KEY0>=<VALUE0>,volume-opt=<KEY1>=<VALUE1>
--name myservice \
<IMAGE>
- Bind mounts are file system paths from the host where the scheduler deploys the container for the task. Docker mounts the path into the container. The file system path must exist before the swarm initializes the container for the task.
The following examples show bind mount syntax:
# Mount a read-write bind
$ docker service create \
--mount type=bind,src=<HOST-PATH>,dst=<CONTAINER-PATH> \
--name myservice \
<IMAGE>
# Mount a read-only bind
$ docker service create \
--mount type=bind,src=<HOST-PATH>,dst=<CONTAINER-PATH>,readonly \
--name myservice \
<IMAGE>
Important note: Bind mounts can be useful but they are also dangerous. In most cases, we recommend that you architect your application such that mounting paths from the host is unnecessary. The main risks include the following:
If you bind mount a host path into your service’s containers, the path must exist on every machine. The Docker swarm mode scheduler can schedule containers on any machine that meets resource availability requirements and satisfies all--constraint
s you specify.
The Docker swarm mode scheduler may reschedule your running service containers at any time if they become unhealthy or unreachable.
Host bind mounts are completely non-portable. When you use bind mounts, there is no guarantee that your application will run the same way in development as it does in production.