-
Notifications
You must be signed in to change notification settings - Fork 3
/
rnpBond.h
251 lines (214 loc) · 7.73 KB
/
rnpBond.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
////////////////////////////////////////////////////////////////////////////////
// Copyright (c) 2019 Prashant K. Jha
// Copyright (c) 2019 Patrick Diehl
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
////////////////////////////////////////////////////////////////////////////////
#ifndef MATERIAL_PD_BONDMATERIAL_NEW_H
#define MATERIAL_PD_BONDMATERIAL_NEW_H
#include "baseMaterial.h"
#include "util/point.h"
#include "util/matrixBlaze.h"
#include "geometry/neighbor.h"
#include "fe/mesh.h"
#include <vector>
#include <hpx/include/parallel_algorithm.hpp>
// forward declaration
namespace inp {
struct MaterialDeck;
struct OutputDeck;
}
// forward declaration
namespace data {
class DataManager;
}
// forward declaration of class
namespace fe {
class Mesh;
} // namespace fe
namespace material {
namespace pd {
class BaseInfluenceFn;
} // namespace pd
} // namespace material
namespace material {
namespace pd {
/*! @brief A Class implementing regularized nonlinear peridynamic model
*
* Provides method to compute energy and force using nonlinear bond-based
* model introduced and studied in
* [Lipton 2016](https://doi.org/10.1007/s10659-015-9564-z),
* [Jha and Lipton 2018](https://epubs.siam.org/doi/10.1137/17M1112236), and
* [Lipton and Jha 2019](https://doi.org/10.1007/s42102-019-00010-0).
*
* 1. The pairwise energy is
* \f[ E_{bond} = \int_D \frac{1}{|B_\epsilon(x)|} \int_{B_\epsilon(x)} |y-x|
* W_{bond}(S(y,x; u)) dy dx \f]
* where \f$ B_\epsilon(x) \f$ is a ball (circle in 2-d) centered at \f$ x\f$
* of radius \f$ \epsilon\f$, \f$ |B_\epsilon(x)| \f$ is the volume (area in
* 2-d) of ball, \f$ S(y,x;u) = \frac{u(y) - u(x)}{|y-x|} \cdot
* \frac{y-x}{|y-x|} \f$
* is the linearized bond strain (assuming small deformation).
*
* 2. Bond energy density \f$ W_{bond} \f$ is given by
* \f[ W_{bond} (S(y,x;u)) = J^\epsilon(|y-x|) \frac{1}{\epsilon |y-x|} \psi
* (|y-x| S(y,x;u)^2) \f]
* where \f$ \psi(r) : \textsf{R}^+ \to \textsf{R} \f$ is positive, smooth,
* concave
* function with following properties
* \f[ \lim_{r\to 0^+} \frac{\psi(r)}{r} = \psi'(0), \quad \lim_{r\to \infty}
* \psi(r) = \psi_\infty < \infty. \f]
* \f$ J^\epsilon(|y-x|)\f$ is the influence function.
*
* 3. Force at material point \f$ x \f$ is given by
* \f[ f_{bond}(x) = \frac{4}{|B_\epsilon(x)|} \int_{B_\epsilon(x)}
* \frac{J^\epsilon(|y-x|)}{\epsilon} \psi'(|y-x| S(y,x;u)^2) S(y,x;u)
* \frac{y-x}{|y-x|} dy.\f]
*
* 4. In this class, we will assume
* \f[ \psi(r) = C ( 1-\exp[-\beta r] \f]
* where \f$ C, \beta \f$ are the peridynamic material parameter
* determined from the elastic and fracture properties of the material.
*/
class RNPBond : public BaseMaterial {
public:
/*!
* @brief Constructor
* @param deck Pointer to the input deck
* @param DataManager Pointer to the data manager object
*/
RNPBond(inp::MaterialDeck *deck,data::DataManager* dataManager);
/*!
* @brief Returns energy and force state between node i and node j
* @param i Id of node i
* @param j node of j
* @return Value Pair of energy and force
*/
std::pair<util::Point3, double> getBondEF(size_t i, size_t j);
/*!
* @brief Returns the bond strain
* @param dx Reference bond vector
* @param du Difference of displacement
* @return strain Bond strain
*/
double getS(const util::Point3 &dx, const util::Point3 &du);
/*!
* @brief Returns the bond strain
* @param i Id of node 1
* @param j Id of node 2
* @return strain Bond strain
*/
double getS(size_t i, size_t j);
/*! @brief Returns critical bond strain
*
* @param r Reference length of bond
* @return strain Critical strain
*/
double getSc(const double &r);
/*!
* @brief Returns critical bond strain
*
* @param i Id of node 1
* @param j Id of node 2
* @return strain Critical strain
*/
double getSc(size_t i , size_t j);
/*!
* @brief Get direction of bond force
* @param dx Relative bond vector (reference configuration)
* @param du Relative bond displacement vector
* @return vector Unit vector along the bond force
*/
util::Point3 getBondForceDirection(const util::Point3 &dx,
const util::Point3 &du) const;
/*!
* @brief Returns the value of influence function
*
* @param r Reference (initial) bond length
* @return value Influence function at r
*/
double getInfFn(const double &r) const ;
private:
/*!
* @brief Computes rnp material parameters from elastic constants
*
* Either Young's modulus E or bulk modulus K, and either critical energy
* release rate Gc or critical stress intensity factor KIc are needed.
* Assuming Poisson's ratio \f$ \nu = \frac{1}{4} \f$ we compute lame
* parameters \f$ \lambda, \mu \f$ where \f$ \mu = \lambda \f$ for bond-based.
*
* With lame parameters, we use following formula, see Equation (5.7) & (5
* .8) of [Lipton 2016](https://doi.org/10.1007/s10659-015-9564-z)
* - if \f$ d=2 \f$
* \f[ \lambda = \mu = \frac{\psi'(0)}{4} M_2, \qquad Gc = \frac{4
* \psi_{\infty}}{\pi} M_2. \f]
* - if \f$ d=3\f$
* \f[ \lambda = \mu = \frac{\psi'(0)}{5} M_3, \qquad Gc = \frac{3
* \psi_{\infty}}{2} M_3. \f]
*
* Where \f$M_2, M_3\f$ are defined by
* \f[ M_2 =\int_0^1 r^2 J(r) dr, \qquad M_3 = \int_0^1 r^3 J(r) dr. \f]
*
* For potential function \f$ \psi(r) = c ( 1-\exp[-\beta r])\f$, we have \f$
* \psi'(0) = c\beta, \psi_{\infty} = c \f$. Thus, the values of \f$ c, \beta \f$
* are given by
* - if \f$ d=2 \f$
* \f[ c = \frac{\pi G_c}{4} \frac{1}{M_2}, \qquad
* \beta = \frac{4 \lambda}{c} \frac{1}{M_2} .\f]
* - if \f$ d=3 \f$
* \f[ c = \frac{2 G_c}{3} \frac{1}{M_3}, \qquad
* \beta = \frac{5 \lambda}{c} \frac{1}{M_3} .\f]
* @param deck Input material deck
* @param M Moment of influence function
*/
void computeParameters(inp::MaterialDeck *deck, const double &M);
/*!
* @brief Computes elastic and fracture properties from the rnp material
* parameters
*
* This function does opposite of pd::Material::RNPBond::computeParameters.
* From peridynamic material properties, it uses the relation between lame
* parameters and peridynamic parameters to compute the lame parameters, and
* from lame parameters it computes the elastic constants.
*
* @param deck Input material deck
* @param M Moment of influence function
*/
void computeMaterialProperties(inp::MaterialDeck *deck, const double &M);
/**
* @name Material parameters
*/
/**@{*/
/*! @brief Parameter C */
double d_C;
/*! @brief Parameter \f$ \beta \f$ */
double d_beta;
/** @}*/
/*! @brief Inflection point of nonlinear function = \f$ 1/\sqrt{2\beta}\f$ */
double d_rbar;
/*! @brief Inverse of factor = \f$ \epsilon |B_\epsilon(0)|\f$ */
double d_invFactor;
/*! @brief Factor to multiply to critical strain to check if bond is
* fractured
*
* For nonlinear model, we consider bond is broken when it
* exceeds 10 times of critical strain. Typical value of factor is 10.
*/
double d_factorSc;
/*! @brief Flag which indicates if the breaking of bond is irreversible */
bool d_irrevBondBreak;
/*! @brief Kn coefficient for normal contact force between broken bonds */
double d_contact_Kn = 0.;
/*! @brief Contact radius for normal contact force between broken bonds */
double d_contact_Rc = 0.;
/*! @brief Pointer to the material deck */
const inp::MaterialDeck *d_deck;
/*! @brief Store pointer to datamanager */
data::DataManager* d_dataManager_p;
/*! @brief Base object for influence function */
material::pd::BaseInfluenceFn *d_baseInfluenceFn_p;
};
} // namespace pd
} // namespace material
#endif // MATERIAL_PD_BONDMATERIAL_NEW_H