-
Notifications
You must be signed in to change notification settings - Fork 19
/
train.py
218 lines (185 loc) · 7.46 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
from __future__ import print_function
import argparse
import logging
import os
import mxnet as mx
import numpy as np
from PIL import Image
from crnn2 import crnn
class SimpleBatch(object):
def __init__(self, data_names, data, label_names, label):
self.data = data
self.label = label
self.data_names = data_names
self.label_names = label_names
self.pad = 0
self.index = None
@property
def provide_data(self):
return [(n, x.shape) for n, x in zip(self.data_names, self.data)]
@property
def provide_label(self):
return [(n, x.shape) for n, x in zip(self.label_names, self.label)]
class OCRIter(mx.io.DataIter):
def __init__(self, batch_size, classes, data_shape, num_label, init_states,dataset_lst):
super(OCRIter, self).__init__()
self.batch_size = batch_size
self.data_shape = data_shape
self.num_label = num_label
self.init_states = init_states
self.init_state_arrays = [mx.nd.zeros(x[1]) for x in init_states]
self.classes = classes
self.dataset_lst_file = open(dataset_lst)
self.provide_data = [('data', (batch_size, 1, data_shape[1], data_shape[0]))] + init_states
self.provide_label = [('label', (self.batch_size, num_label))]
def __iter__(self):
init_state_names = [x[0] for x in self.init_states]
data = []
label = []
cnt = 0
for m_line in self.dataset_lst_file:
img_path,img_label = m_line.strip().split(',')
cnt += 1
img = Image.open(img_path).resize(self.data_shape,Image.BILINEAR).convert('L')
img = np.array(img).reshape((1, data_shape[1], data_shape[0]))
data.append(img)
plate_str = img_label
ret = np.zeros(self.num_label, int)
for number in range(len(plate_str)):
ret[number] = self.classes.index(plate_str[number]) + 1
label.append(ret)
if cnt % self.batch_size == 0:
data_all = [mx.nd.array(data)] + self.init_state_arrays
label_all = [mx.nd.array(label)]
data_names = ['data'] + init_state_names
label_names = ['label']
data.clear()
label.clear()
yield SimpleBatch(data_names, data_all, label_names, label_all)
continue
def reset(self):
if self.dataset_lst_file.seekable():
self.dataset_lst_file.seek(0)
def ctc_label(p):
ret = []
p1 = [0] + p
for i in range(len(p)):
c1 = p1[i]
c2 = p1[i + 1]
if c2 == 0 or c2 == c1:
continue
ret.append(c2)
return ret
def remove_blank(l):
ret = []
for i in range(len(l)):
if l[i] == 0:
break
ret.append(l[i])
return ret
def Accuracy(label, pred):
global BATCH_SIZE
global SEQ_LENGTH
hit = 0.
total = 0.
for i in range(BATCH_SIZE):
l = remove_blank(label[i])
p = []
for k in range(SEQ_LENGTH):
p.append(np.argmax(pred[k * BATCH_SIZE + i]))
p = ctc_label(p)
if len(p) == len(l):
match = True
for k in range(len(p)):
if p[k] != int(l[k]):
match = False
break
if match:
hit += 1.0
total += 1.0
return hit / total
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--name',required=True,help='the model name')
parser.add_argument('--charset',required=True,help='the charset file')
parser.add_argument('--train_lst',required=True,help='the csv which contains all train list')
parser.add_argument('--val_lst',help='the csv which contains all val list')
parser.add_argument('--batch_size',type=int,default=64,help='train/val batch size,default is 64')
parser.add_argument('--seq_len',type=int,default=17,help='the sequence length effected by image width')
parser.add_argument('--num_label',type=int,default=9,help='output label length,must less than seq_len')
parser.add_argument('--imgH',type=int,default=32,help='image height,must divided by 16')
parser.add_argument('--imgW',type=int,default=200,help='image width')
parser.add_argument('--num_hidden',type=int,default=256,help='num of parameters in lstm hidden layer')
parser.add_argument('--num_lstm',type=int,default=2,help='num of lstm layers')
parser.add_argument('--gpu',action='store_true',help='enable train with gpu(0)')
parser.add_argument('--from_epoch',type=int,help='continue train from specific epoch file')
parser.add_argument('--learning_rate',type=float,help='the learning rate of adam')
opt = parser.parse_args()
model_name = opt.name
log_file_name = model_name+'.log'
log_file = open(log_file_name, 'w')
log_file.close()
logging.basicConfig()
logger = logging.getLogger()
logger.setLevel(logging.INFO)
fh = logging.FileHandler(log_file_name)
logger.addHandler(fh)
model_dir_path = os.path.join(os.getcwd(), 'model')
if not os.path.exists(model_dir_path):
os.mkdir(model_dir_path)
prefix = os.path.join(os.getcwd(), 'model', model_name)
BATCH_SIZE = opt.batch_size
SEQ_LENGTH = opt.seq_len
num_hidden = opt.num_hidden
num_lstm_layer = opt.num_lstm
num_label = opt.num_label
data_shape = (opt.imgW, opt.imgH)
with open(opt.charset) as to_read: classes = list(to_read.read().strip())
num_classes = len(classes) + 1
def sym_gen(seq_len):
return crnn(num_lstm_layer, BATCH_SIZE, seq_len,
num_hidden=num_hidden, num_classes=num_classes,
num_label=num_label, dropout=0.3)
init_c = [('l%d_init_c' % l, (BATCH_SIZE, num_hidden)) for l in range(num_lstm_layer * 2)]
init_h = [('l%d_init_h' % l, (BATCH_SIZE, num_hidden)) for l in range(num_lstm_layer * 2)]
init_states = init_c + init_h
data_train = OCRIter(BATCH_SIZE, classes, data_shape, num_label, init_states,opt.train_lst)
data_val = None
if opt.val_lst is not None:
data_val = OCRIter(BATCH_SIZE, classes, data_shape, num_label, init_states,opt.val_lst)
ctx = mx.gpu(0) if opt.gpu else mx.cpu(0)
data_names = ['data', 'l0_init_c', 'l1_init_c', 'l2_init_c', 'l3_init_c', 'l0_init_h', 'l1_init_h', 'l2_init_h',
'l3_init_h']
label_names = ['label', ]
if opt.from_epoch is None:
symbol = sym_gen(SEQ_LENGTH)
model = mx.module.Module(
symbol=symbol,
data_names=data_names,
label_names=label_names,
context=ctx
)
else:
model = mx.module.Module.load(
prefix,
opt.from_epoch,
data_names=data_names,
label_names=label_names,
context=ctx,
)
head = '%(asctime)-15s %(message)s'
logging.basicConfig(level=logging.DEBUG, format=head)
logger.info('begin fit')
model.fit(
train_data=data_train,
eval_data=data_val,
eval_metric=mx.metric.np(Accuracy),
batch_end_callback=mx.callback.Speedometer(BATCH_SIZE, 100),
epoch_end_callback=mx.callback.do_checkpoint(prefix, 1),
optimizer='adam',
optimizer_params={'learning_rate': opt.learning_rate},
initializer=mx.init.Xavier(factor_type="in", magnitude=2.34),
num_epoch=200,
begin_epoch=opt.from_epoch if opt.from_epoch else 0
)
model.save_params(model_name)