forked from XLabs-AI/x-flux
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
126 lines (116 loc) · 4.32 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import argparse
from PIL import Image
import os
from src.flux.xflux_pipeline import XFluxPipeline
def create_argparser():
parser = argparse.ArgumentParser()
parser.add_argument(
"--prompt", type=str, required=True,
help="The input text prompt"
)
parser.add_argument(
"--neg_prompt", type=str, default="",
help="The input text negative prompt"
)
parser.add_argument(
"--local_path", type=str, default=None,
help="Local path to the model checkpoint (Controlnet)"
)
parser.add_argument(
"--repo_id", type=str, default=None,
help="A HuggingFace repo id to download model (Controlnet)"
)
parser.add_argument(
"--name", type=str, default=None,
help="A filename to download from HuggingFace"
)
parser.add_argument(
"--lora_repo_id", type=str, default=None,
help="A HuggingFace repo id to download model (LoRA)"
)
parser.add_argument(
"--lora_name", type=str, default=None,
help="A LoRA filename to download from HuggingFace"
)
parser.add_argument(
"--device", type=str, default="cuda",
help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)"
)
parser.add_argument(
"--offload", action='store_true', help="Offload model to CPU when not in use"
)
parser.add_argument(
"--use_lora", action='store_true', help="Load Lora model"
)
parser.add_argument(
"--use_controlnet", action='store_true', help="Load Controlnet model"
)
parser.add_argument(
"--image", type=str, default=None, help="Path to image"
)
parser.add_argument(
"--lora_weight", type=float, default=0.9, help="Lora model strength (from 0 to 1.0)"
)
parser.add_argument(
"--control_type", type=str, default="canny",
choices=("canny", "openpose", "depth", "hed", "hough", "tile"),
help="Name of controlnet condition, example: canny"
)
parser.add_argument(
"--model_type", type=str, default="flux-dev",
choices=("flux-dev", "flux-dev-fp8", "flux-schnell"),
help="Model type to use (flux-dev, flux-dev-fp8, flux-schnell)"
)
parser.add_argument(
"--width", type=int, default=512, help="The width for generated image"
)
parser.add_argument(
"--height", type=int, default=512, help="The height for generated image"
)
parser.add_argument(
"--num_steps", type=int, default=50, help="The num_steps for diffusion process"
)
parser.add_argument(
"--guidance", type=float, default=3.5, help="The guidance for diffusion process"
)
parser.add_argument(
"--seed", type=int, default=123456789, help="A seed for reproducible inference"
)
parser.add_argument(
"--true_gs", type=float, default=3, help="true guidance"
)
parser.add_argument(
"--timestep_to_start_cfg", type=int, default=100, help="timestep to start true guidance"
)
parser.add_argument(
"--save_path", type=str, default='results', help="Path to save"
)
return parser
def main(args):
if args.image:
image = Image.open(args.image)
else:
image = None
xflux_pipeline = XFluxPipeline(args.model_type, args.device, args.offload, args.seed)
if args.use_lora:
print('load lora:', args.lora_repo_id, args.lora_name)
xflux_pipeline.set_lora(None, args.lora_repo_id, args.lora_name, args.lora_weight)
if args.use_controlnet:
xflux_pipeline.set_controlnet(args.control_type, args.local_path, args.repo_id, args.name)
result = xflux_pipeline(prompt=args.prompt,
controlnet_image=image,
width=args.width,
height=args.height,
guidance=args.guidance,
num_steps=args.num_steps,
true_gs=args.true_gs,
neg_prompt=args.neg_prompt,
timestep_to_start_cfg=args.timestep_to_start_cfg,
)
if not os.path.exists(args.save_path):
os.mkdir(args.save_path)
ind = len(os.listdir(args.save_path))
result.save(os.path.join(args.save_path, f"result_{ind}.png"))
if __name__ == "__main__":
args = create_argparser().parse_args()
main(args)