forked from facebookresearch/ic_gan
-
Notifications
You must be signed in to change notification settings - Fork 0
/
predict.py
307 lines (267 loc) · 11.3 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import sys
import os
import tempfile
import warnings
from pathlib import Path
import nltk
import torch
from torch import nn
import torchvision.transforms as transforms
import numpy as np
import imageio
from PIL import Image as Image_PIL
from scipy.stats import truncnorm
from nltk.corpus import wordnet as wn
import cma
import sklearn.metrics
import cog
sys.path.insert(0, "stylegan2_ada_pytorch")
from pytorch_pretrained_biggan import convert_to_images, utils
import inference.utils as inference_utils
import data_utils.utils as data_utils
NORM_MEAN = torch.Tensor([0.485, 0.456, 0.406]).view(3, 1, 1)
NORM_STD = torch.Tensor([0.229, 0.224, 0.225]).view(3, 1, 1)
nltk.download("wordnet")
IND2NAME = {
index: wn.of2ss("%08dn" % offset).lemma_names()[0]
for offset, index in utils.IMAGENET.items()
}
NAME2IND = dict([(value, key) for key, value in IND2NAME.items()])
CLASS_NAMES = sorted(list(IND2NAME.values()))
class Predictor(cog.Predictor):
def setup(self):
torch.manual_seed(np.random.randint(sys.maxsize))
warnings.simplefilter("ignore", cma.evolution_strategy.InjectionWarning)
self.last_gen_model = None
self.last_feature_extractor = None
self.model = None
self.feature_extractor = None
self.noise_size = 128
self.batch_size = 4
self.size = 256
@cog.input("image", type=Path, help="Input image Instance")
@cog.input("gen_model", type=str, options=["icgan", "cc_icgan"], default="icgan",
help='Select type of IC-GAN model. "icgan" is conditioned on the input image; '
'"cc_icgan" is conditioned on both input image and a conditional_class')
@cog.input("conditional_class", type=str, default=None, options=CLASS_NAMES,
help="Choose conditional class. Only valid for gen_model=cc_icgan")
@cog.input("num_samples", type=int, default=1, options=[1, 4, 9, 16],
help="number of samples generated")
@cog.input("seed", type=int, default=0, help="seed=0 means no seed")
def predict(self, image, gen_model="icgan", conditional_class=None, num_samples=1, seed=0):
assert isinstance(seed, int), "seed should be an integer"
if gen_model == 'cc_icgan':
assert conditional_class is not None, 'please set conditional_class for cc_icgan'
num_samples_ranked = num_samples
experiment_name = (
"icgan_biggan_imagenet_res256"
if gen_model == "icgan"
else "cc_icgan_biggan_imagenet_res256"
)
num_samples_total = num_samples * 10
truncation = 0.7
if conditional_class is not None:
class_index = NAME2IND[conditional_class]
input_image_instance = str(image)
if gen_model == "icgan":
class_index = None
if seed == 0:
seed = None
state = None if not seed else np.random.RandomState(seed)
np.random.seed(seed)
feature_extractor_name = ("classification" if gen_model == "cc_icgan" else "selfsupervised")
# Load feature extractor (outlier filtering and optionally input image feature extraction)
self.feature_extractor, self.last_feature_extractor = load_feature_extractor(
gen_model, self.last_feature_extractor, self.feature_extractor)
# Load features
if input_image_instance not in ["None", "", None]:
print("Obtaining instance features from input image!")
input_feature_index = None
input_image_tensor = preprocess_input_image(input_image_instance, self.size)
with torch.no_grad():
input_features, _ = self.feature_extractor(input_image_tensor.cuda())
input_features /= torch.linalg.norm(input_features, dim=-1, keepdims=True)
elif input_feature_index is not None:
print("Selecting an instance from pre-extracted vectors!")
input_features = np.load(
"stored_instances/imagenet_res"
+ str(self.size)
+ "_rn50_"
+ feature_extractor_name
+ "_kmeans_k1000_instance_features.npy",
allow_pickle=True,
).item()["instance_features"][input_feature_index: input_feature_index + 1]
else:
input_features = None
# Load generative model
self.model, self.last_gen_model = load_generative_model(
gen_model, self.last_gen_model, experiment_name, self.model)
# Prepare other variables
replace_to_inplace_relu(self.model)
# Create noise, instance and class vector
noise_vector = truncnorm.rvs(
-2 * truncation,
2 * truncation,
size=(num_samples_total, self.noise_size),
random_state=state,
).astype(np.float32)
noise_vector = torch.tensor(noise_vector, requires_grad=False, device="cuda")
if input_features is not None:
instance_vector = torch.tensor(
input_features, requires_grad=False, device="cuda"
).repeat(num_samples_total, 1)
else:
instance_vector = None
if class_index is not None:
input_label = torch.LongTensor([class_index] * num_samples_total)
else:
input_label = None
if input_feature_index is not None:
print("Conditioning on instance with index: ", input_feature_index)
all_outs, all_dists = [], []
for i_bs in range(num_samples_total // self.batch_size + 1):
start = i_bs * self.batch_size
end = min(start + self.batch_size, num_samples_total)
if start == end:
break
out = get_output(
noise_vector[start:end],
input_label[start:end] if input_label is not None else None,
instance_vector[start:end] if instance_vector is not None else None,
self.model,
truncation,
channels=3,
)
if instance_vector is not None:
# Get features from generated images + feature extractor
out_ = preprocess_generated_image(out)
with torch.no_grad():
out_features, _ = self.feature_extractor(out_.cuda())
out_features /= torch.linalg.norm(out_features, dim=-1, keepdims=True)
dists = sklearn.metrics.pairwise_distances(
out_features.cpu(),
instance_vector[start:end].cpu(),
metric="euclidean",
n_jobs=-1,
)
all_dists.append(np.diagonal(dists))
all_outs.append(out.detach().cpu())
del out
all_outs = torch.cat(all_outs)
all_dists = np.concatenate(all_dists)
# Order samples by distance to conditioning feature vector and select only num_samples_ranked images
selected_idxs = np.argsort(all_dists)[:num_samples_ranked]
# Create figure
row_i, col_i, i_im = 0, 0, 0
all_images_mosaic = np.zeros(
(
3,
self.size * (int(np.sqrt(num_samples_ranked))),
self.size * (int(np.sqrt(num_samples_ranked))),
)
)
for j in selected_idxs:
all_images_mosaic[
:,
row_i * self.size: row_i * self.size + self.size,
col_i * self.size: col_i * self.size + self.size,
] = all_outs[j]
if row_i == int(np.sqrt(num_samples_ranked)) - 1:
row_i = 0
if col_i == int(np.sqrt(num_samples_ranked)) - 1:
col_i = 0
else:
col_i += 1
else:
row_i += 1
i_im += 1
out_path = Path(tempfile.mkdtemp()) / "out.png"
save(all_images_mosaic[np.newaxis, ...], str(out_path), torch_format=False)
return out_path
def replace_to_inplace_relu(model):
for child_name, child in model.named_children():
if isinstance(child, nn.ReLU):
setattr(model, child_name, nn.ReLU(inplace=False))
else:
replace_to_inplace_relu(child)
def save(out, name=None, torch_format=True):
if torch_format:
with torch.no_grad():
out = out.cpu().numpy()
img = convert_to_images(out)[0]
if name:
imageio.imwrite(name, np.asarray(img))
return img
def load_icgan(experiment_name, root_=""):
root = os.path.join(root_, experiment_name)
config = torch.load("%s/%s.pth" % (root, "state_dict_best0"))["config"]
config["weights_root"] = root_
config["model_backbone"] = "biggan"
config["experiment_name"] = experiment_name
G, config = inference_utils.load_model_inference(config)
G.cuda()
G.eval()
return G
def get_output(noise_vector, input_label, input_features, model, truncation, channels):
# stochastic_truncation = False as how it is set in colab
noise_vector = noise_vector.clamp(-2 * truncation, 2 * truncation)
if input_label is not None:
input_label = torch.LongTensor(input_label)
else:
input_label = None
out = model(
noise_vector,
input_label.cuda() if input_label is not None else None,
input_features.cuda() if input_features is not None else None,
)
if channels == 1:
out = out.mean(dim=1, keepdim=True)
out = out.repeat(1, 3, 1, 1)
return out
def load_generative_model(gen_model, last_gen_model, experiment_name, model):
# Load generative model
if gen_model != last_gen_model:
model = load_icgan(experiment_name, root_="./")
last_gen_model = gen_model
return model, last_gen_model
def load_feature_extractor(gen_model, last_feature_extractor, feature_extractor):
# Load feature extractor to obtain instance features
feat_ext_name = "classification" if gen_model == "cc_icgan" else "selfsupervised"
if last_feature_extractor != feat_ext_name:
if feat_ext_name == "classification":
feat_ext_path = ""
else:
feat_ext_path = "swav_pretrained.pth.tar"
last_feature_extractor = feat_ext_name
feature_extractor = data_utils.load_pretrained_feature_extractor(
feat_ext_path, feature_extractor=feat_ext_name
)
feature_extractor.eval()
return feature_extractor, last_feature_extractor
def preprocess_input_image(input_image_path, size):
pil_image = Image_PIL.open(input_image_path).convert("RGB")
transform_list = transforms.Compose(
[
data_utils.CenterCropLongEdge(),
transforms.Resize((size, size)),
transforms.ToTensor(),
transforms.Normalize(NORM_MEAN, NORM_STD),
]
)
tensor_image = transform_list(pil_image)
tensor_image = torch.nn.functional.interpolate(
tensor_image.unsqueeze(0), 224, mode="bicubic", align_corners=True
)
return tensor_image
def preprocess_generated_image(image):
transform_list = transforms.Normalize(NORM_MEAN, NORM_STD)
image = transform_list(image * 0.5 + 0.5)
image = torch.nn.functional.interpolate(
image, 224, mode="bicubic", align_corners=True
)
return image