
Toward Rapid Understanding of Production HPC Applications and Systems

Anthony Agelastos, Benjamin Allan, Jim Brandt, Ann Gentile,
Sophia Lefantzi, Steve Monk, Jeff Ogden, Mahesh Rajan, and Joel Stevenson

Sandia National Laboratories
Albuquerque, NM.

Email: (amagela|baallan|brandt|gentile|slefant|smonk|jbogden|mrajan|josteve)@sandia.gov

Abstract—A detailed understanding of HPC application’s
resource needs and their complex interactions with each other
and HPC platform resources is critical to achieving scalability
and performance. Such understanding has been difficult to
achieve because typical application profiling tools do not cap-
ture the behaviors of codes under the potentially wide spectrum
of actual production conditions and because typical monitoring
tools do not capture system resource usage information with
high enough fidelity to gain sufficient insight into application
performance and demands.

In this paper we present both system and application
profiling results based on data obtained through synchronized
system wide monitoring on a production HPC cluster at Sandia
National Laboratories (SNL). We demonstrate analytic and
visualization techniques that we are using to characterize
application and system resource usage under production con-
ditions for better understanding of application resource needs.
Our goals are to improve application performance (through
understanding application-to-resource mapping and system
throughput) and to ensure that future system capabilities match
their intended workloads.

Keywords-High Performance Computing; Monitoring

I. INTRODUCTION

Workload balance across all processes of an application
is key to achieving both scalability and performance on
today’s large scale High Performance Computing (HPC)
platforms. Intelligent scheduling and resource-to-application
mapping is a crucial component to achieving workload
balance in the face of multiple applications competing for
shared and possibly oversubscribed resources (e.g., network,
filesystems). In recent years, there has been increased em-
phasis on concurrently considering both applications and
their target platforms design and development, referred to
as co-design. In practice, however, application developers
and users are generally at the mercy of the platforms that
are available to them and system administrators and buyers
have limited insight into the actual resource requirements
of the supported applications. While application developers
may use performance analysis tools to better tune application
performance, such tools are not generally used under typical
production conditions with respect to scale and contention

Sandia National Laboratories is a multi-program laboratory managed and
operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear
Security Administration under contract DE-AC04-94AL85000.

with concurrently running applications. Additionally, the
types of analyses performed by the application developer
may not be those of most benefit to the system administrator.

Herein we demonstrate that continuous, synchronous,
high-fidelity, whole-system monitoring can provide mean-
ingful profiling of system and application resource utilization
under production conditions. Further we discuss how use
of this information can drive more efficient troubleshooting,
platform utilization, and procurement decisions. In this paper
we present results from our ASC capacity 1,232 compute
node cluster, Chama, using our lightweight HPC monitoring
tools. To the best of our knowledge, we provide the only
production HPC environment to continuously monitor at
rates suitable for application profiling analysis and to share
this level of profiling results with general users.

The outline of this paper is as follows. In Sections II and
III we present our motivation and requirements for moni-
toring systems and applications in SNL’s HPC environment.
Next in Sections IV and V we present system (focused
on conditions of interest) and application resource utiliza-
tion profiling data gathered on Chama. We show how the
profiling data can be used to: better understand applications
and their resource utilization, both alone and in conjunction
with other concurrently running applications; guide users in
efficiently matching their applications to available resources;
provide administrators insight into the system’s usage; and
provide buyers information on target application resource
demands. We discuss related work in Section VI and address
future work and conclude in Section VII.

II. MOTIVATION

The following HPC-centric roles are typically hampered
due to a lack of sufficient information: system administrators
trying to troubleshoot application/system performance and
variation issues as well as maximize system efficiency and
throughput; application users striving to minimize time to
solution; code developers needing to know if their latest
enhancements positively or negatively impacted production
simulations; and system architects. The lacking information
is insight, at an appropriate fidelity, into how applications
are utilizing resources and what resources are being over-
subscribed/under-subscribed by how much and why.

We are utilizing our Lightweight Distributed Metric Ser-
vice (LDMS) [1] at SNL to continuously monitor HPC re-
sources and provide insight into resource utilization. LDMS
is particularly suitable for this task because it does not
significantly skew the resource utilization measurements
and it provides synchronized sampling, i.e., data over the
same time window across the entire system. On Chama,
we monitor with temporal resolutions ranging from 1 to 20
seconds where 20 seconds is the default. The data generated
by LDMS can provide insight for many areas/roles including
administrative debugging, user code optimization, and HPC
hardware architects and procurement planners.

Administrative debugging: By having access to syn-
chronously collected, system-wide data, about all metrics
of interest, system administrators can rapidly debug job
slowness due to over-subscription of resources (e.g., file
system bandwidth) for a particular user or over a whole
cluster. For example, traditional monitoring systems and user
reports can show when a site-shared parallel file system has
been heavily loaded and caused I/O to take much longer than
usual. With a robust data collection tool that exposes file I/O
statistics on a per node and job basis, system administrators
can quickly detect if it is a particular user, code, or an
aggregate over several jobs with high-storage bandwidth
needs that is causing file system slowness.

User code optimization: In order to assist users to bet-
ter understand their application’s behavioral characteristics
and optimize/debug where needed, for each user job we
provide time history plots, such as those presented here,
and usage summary text files in a canonical location with
appropriate file permissions. Users can then reference the
appropriate files for any of their jobs.

HPC hardware architects and procurement planners:
In order to meet the needs of their user communities, those
planning future procurements need to be able to size the
breadth (number of nodes), depth (number of compute cores,
memory, etc.), and support systems (storage, network, burst
buffers, etc.) of their next platforms. Having statistics over
time (e.g., memory per core usage, I/O router bandwidth, in-
terconnect bandwidth, latency) gives SNL system architects
data to use as requirements in the design and procurement
of their future HPC systems.

III. SAMPLING FIDELITY

In order to provide meaningful information on resource
utilization, a monitoring system must sample at fidelities
commensurate with the features it is necessary to resolve
since one cannot know apriori where and when regions and
issues of interest may arise. Typical system monitoring tools
are deployed with sampling intervals of minutes. Unsyn-
chronized data at such low fidelity are unsuitable for the
type of understanding discussed herein. This is illustrated
in Figure 1, which shows a resource utilization profile of a
64-node Sierra/SolidMechanics (Adagio) job; this run will

be examined in more detail in Section V-B3. Here the time
spent in IO wait over sampling intervals at 1 sec (top) and 60
sec (bottom) are considered for the same job. Values during
the job execution are shown on the white background. Each
node in the job is an individual line. Job Id and time range
are given at the top of the figure. This format is used for
the figures throughout the rest of the paper.

Insight into the behavior of the application is significantly
different for the two sampling intervals. At higher fidelity,
it is clear that the nodes spend time in I/O wait over a
significant portion of the application run time. This detail
is lost at larger sampling intervals.

Figure 1. IO wait profiles for a 64-node job: 1 sec interval (top), 60 sec
interval (bottom). Features are lost at longer sampling intervals. Each line
is a single node’s data. The legend of lines colored by nodes have been
suppressed. The gray background shows times pre- and post-job. These job
presentation format details are used in subsequent figures as well.

IV. SYSTEM PROFILING USING WHOLE-SYSTEM DATA

Collecting full-system profiling data enables system-wide
insight as well as insight into an application’s performance
and system resource utilization characteristics. Additionally,
it can shed light on system hot spots due to competition for
shared resources both within and between applications. An
important attribute of our monitoring process in this case is
that data collection is synchronized in time across all nodes
of a system. This synchronization has the effect of producing
a “snapshot” across the whole system of the state metrics
that are being collected. System-wide maps and plots are
presented in this section; these can be used to easily visualize
aggregate use of resources as well as how individual jobs
are contributing to that utilization.

A. System I/O Profiling

Demands on the file system and file system performance
are of particular interest on our HPC systems. This is be-
cause for many applications poor file I/O translates directly
into poor application performance. Thus applications that
cause severe congestion in the parallel file system, either on
their own or due to aggregate load, can severely impact all
I/O sensitive jobs on the system.

System-wide visualizations of Lustre data can give insight
into which clients are utilizing significant file system band-
width. Additionally, time and node information can be as-
sociated with scheduler/resource manager (RM) information
in order to give administrators insight into resource demands
associated with particular jobs which in turn maps into the
associated applications and their run-time parameters.

Lustre reads and writes over a 24-hour period are shown in
Figures 2 and 3 (top), respectively. Both are plotted on the
same scale, however, over the time shown, the maximum
number of bytes read in a 20 second interval is over
an order of magnitude greater than the maximum number
of bytes written (example near-maximum magnitude read
occurrences are marked in Figure 2). Nodes and times with
particularly high demand are easily identified. In addition,
by summing the values over all nodes for a time window,
it is readily apparent if/when resource limits are being hit.
In Figure 3, this sum is shown as time-history plot (a)
beneath the associated heat map. Additionally, the values
of individual jobs (c,d,e) can also be broken out of the
aggregate (b). Thus, when there are slowdowns due to
file system overload it can be easily seen what jobs/nodes
are the heaviest users of the file system. Ultimately by
associating these characteristics with a (user, application,
parameters) tuple, schedulers and resource managers can be
more intelligent about placement and thus increase overall
machine throughput.

B. System Memory Profiling

While memory is a node-level resource that is only
shared by an application’s processes, understanding how an
application utilizes memory across its distributed processes
with respect to total per-node, total concurrently active, and
balance quantities are still important. If the result is the
need for a different task decomposition that spreads the
job over more nodes this means that the terminated job’s
resources over the time until termination were wasted, i.e.,
did not contribute to useful results. Thus, user understanding
of their application’s memory needs with respect to size
and bandwidth and right-sizing memory for the workloads
running on a platform is important to an efficient system.
Note that long term memory profiling provides real-use
statistics that can be utilized in next generation platform
design and procurement requirements.

Additionally providing the information that enables an
administrator to quickly identify the reason for a job running

Figure 2. System map of bytes read/sec over the 1,232-node cluster over
a 24 hr. period. Hot spots and long-lived features are identifiable.

out of memory is key to getting the problem resolved quickly
and not having needless repeats. Heat maps for active
memory utilization, similar to Figure 2, can enable a system
administrator to easily correlate areas of high utilization with
what job was being run and the associated user. Likewise, ar-
eas of extremely low utilization, especially over many nodes
and long periods of time, can be used to identify candidates
for consolidation which could free up resources for other
jobs. Note that while low memory utilization could be due
to need for higher per-process memory bandwidth it could
also be due to a lack of understanding on the part of the
user. Section V-B4 describes a use case where identification
of a user application with low memory utilization has led to
runtime changes and improved throughput.

V. APPLICATION PROFILING USING WHOLE SYSTEM
DATA

Appropriate mapping of an application to system re-
sources is key to maximizing throughput. Even if a user
has profiled their code with typical profiling tools, the
results may not capture the performance of the application
under production conditions where other applications are
competing for shared resources. Additionally, when new
features are added to an application or enhancements to
the platform occur, rigorous re-profiling may not take place.
Finally, since the overall performance is subject to a number
of application needs, complete profiling of an application,
including changes in resource demands with a wide variety
of application input, may not be feasible. Instrumenting

Figure 3. Continuous, high-fidelity monitoring can be used to identify
jobs contending for the same shared resources in addition to an indication
of their contention. System map of bytes written/sec over the 1,232-node
cluster for the same 24 hr. period as Figure 2 (top). Total bytes written/sec
for all nodes (a). Contributions to this total from three jobs overlapping in
time (c), (d), and (e); these jobs also marked in (top). To assist in assessing
magnitudes, (b) is a slice of (a) limited to the y range of (c)-(e). Coloring
in (a)-(e) is for distinguishing plots and is unrelated to the key in (top).

a particular application can provide insight but is done
on a per-application basis, and access to system-specific
information (beyond the interfaces to quantities in /proc)
would require re-instrumentation for every platform.

As a result, in many cases, users apply rules-of-thumb to
determine the resource requests and mapping (e.g., X mesh
elements per node, Y processors per node) without know-
ing the actual resource demand numbers. Further, system
administrators, who may have understanding of a specific

sub-system (e.g., network or storage) have limited access
to the application’s usage requirements and thus are missing
key information that can be used for early problem detection.
Similarly purchasers lack this information and are limited in
their ability to match acquisitions to needs.

This section shows how the same type of data used for
system profiling in Section IV, when combined with sched-
uler/RM information, can be utilized for coarse profiling
of individual jobs which in turn represent applications and
their run-time parameters. We first introduce the concept of
application resource utilization scoring. We then present 6
application use cases from SNL’s Chama where we utilize
a combination of visual analysis and resource utilization
scoring to provide understanding of these jobs profiles.

We discuss profiles of active memory and Lustre I/O for
the applications presented. These profiles also demonstrate
that even for significantly large jobs (node counts up to
512 nodes are covered), in many cases, a single graphic
per-metric for all nodes can convey important information.
Imbalance in time and/or space are easily observed.

Note that profiles provided to users include the job
information and node legends as in Figure 10. These are
suppressed in some of the figures on this paper due to space
constraints at large node counts. Grey areas in the figures
distinguish pre- and post-job times in order to inform the
viewer of the state of the nodes surrounding the job.

A. Resource Utilization Scoring

In order to help system administrators, analysts, and
users quickly identify resource utilization behaviors that
may imply room for substantial performance improvement,
deviate substantially from what is typical, or have large
run-to-run variation we have begun working on a job-based
resource utilization scoring methodology.

Our currently defined scores focus on: 1) determining
the fractional utilization of target resources relative to some
upper value based on hardware and/or configuration limita-
tions and 2) determining how well-balanced the utilization
of the target resources is across all nodes of a job. We use
deciles to score usages and the skewed scale in Table I to
convert standard deviation into a balance score. On both
scales, 1 is the “poor” end of the scale. The skewed balance
scale conversion is chosen empirically to emphasize poor
performers since σ is unbounded.

Category Score 1 2 3 4 5 6 7 8 9 10
Usage µ < 10 20 30 40 50 60 70 80 90 100
Balance σ < ∞ 35 30 25 20 15 10 7 4 1

Table I
BINS CONVERTING µ & σ TO SCORES.

While the methodologies presented in this paper are
applied to single metric examples (e.g., memory utilization
and Lustre I/O) it is important to recognize that focusing

on single metric scores may be misleading when taken out
of the context of the whole. For example, a low memory
utilization score taken without the context of memory band-
width might look glaringly bad whereas coupled with a high
memory bandwidth utilization score it may be quite fine.

To illustrate this basic scoring method, we first show it
applied to the metric “Active memory as a % of physical
memory” for the applications described in Section V-B. The
results are tabulated in Table II and cross-referenced to the
Active Memory plots (Section V-B) in the final table column.

Fig. %Peak µ % σ % Bal Usage P.U.
4.1(top) 36 22 7.3 7 3 4

5.1 26 25 0.1 10 3 3
7.1 18 2.4 3.6 9 1 2
8.1 17 15 0.1 8 2 2
10 61 12 108.4 1 2 7

Table II
JOB MEMORY USAGE CONVERTED TO SCORES.

In Table II % Peak is the maximum memory usage seen
on any node within the job, µ is the time averaged memory
usage percentage averaged across all nodes, and σ is the
average deviation of single nodes from the job average µ
expressed as relative percentage: 100 × σ/µ. Both time
averaged (µ) and single node peak (P.U.) are scored.

This simple single-metric scoring scheme is effective at
highlighting persistent memory imbalances (e.g., Figures 4
and 10). However, in a large job where transient single-node
peak usage causes an out-of-memory failure, that peak may
be washed out in the standard deviation calculation.

Table III applies the scoring method to Lustre read
and write bandwidth illustrating the complexity of creating
scores based on single metrics collected from compute
nodes. The Lustre store used has 20 QDR IB links con-
necting it to the compute nodes. The assumptions in the
Lustre bandwidth scoring process include the following: (1)
the appropriate “fair share” 100% usage value for streaming
bandwidth to or from storage for a single compute node is
the available store bandwidth (e.g., 80GB/second) divided
by the number of nodes in the job; (2) applications light
on Lustre use during computations should not be penalized
by including intervals with no traffic in their job-level
bandwidth average; (3) no other jobs are contending for the
Lustre filesystem; and (4) there is no need to distinguish
fresh and cached bytes. These assumptions could be avoided
by performing more complex analyses with data extracted
from a Lustre appliance should such data become available.

In Table III Peak is the maximum link fair share band-
width % used by Lustre read or write on any node within the
job (which due to cache effects and stripe imbalance might
be well over the chosen fair share bound), µ is the time
averaged fair share bandwidth percentage averaged across
all nodes including only those intervals with Lustre read or

Fig. Peak % µ % σ % Bal Usage Act. %
READ

4.3 135.18 11 7.3 7 2 1.44
5.2 65.29 42 9.7 7 5 1.00
7.4 38.79 3.0 10 6 1 22.14
8.2 0.10 0.05 94 1 1 0.01

11.1 29.92 0.50 200 1 1 11.92
WRITE

4.4 0.01 0.00 2263 1 1 0.02
5.3 122 15.1 14 6 2 2.2
7.5 9.3 2.6 5 8 1 37.7
8.3 7.4 0.05 140 1 1 0.52

11.2 8.1 0.22 200 1 1 10.1

Table III
LUSTRE BANDWIDTHS CONVERTED TO SCORES.

write activity, and σ is the average deviation of single nodes
from the job average µ expressed as relative percentage:
100×σ/µ. Column Act. gives the portion of intervals across
all nodes with active (non-zero) read or write values.

Before examining the continuous monitoring time-series
data, we can reasonably anticipate some I/O features: (1) the
balance scores for Figures 8 and 11 suggest I/O occurring
from only a single node of the job, (2) the Activity and
Usage scores for Figure 4 suggest that checkpoint and
output were disabled for the run, and (3) the high Balance
and Activity scores suggest Figure 7 may reveal something
interesting to account for the low Usage score.

B. Application Use Cases

In this section, we examine the continuous monitoring
data and scoring as it applies to some of the most significant
applications in our workload.

The first three cases (Nalu, CTH, Adagio) show how
a user can gain insight into their application’s behavior
from the resource utilization scores and profiles. The out
of memory case (OOM) addresses a common job failure
mode on our system, and how the profiles can be used
to help in identifying and troubleshooting the applications.
Two cases (LAMMPS and Gaussian) address how the scores
and profiles can be used to identify and gain insight into
applications that could better utilize resources and improve
overall throughput. In addition, understanding of the work-
load demands of the final case also drives a recommendation
for future procurements.

1) Sierra Low Mach Module: Nalu: The one-second
profiles for one of the 8,192 processing element (PE) sim-
ulations are presented in Figure 4. The CPU and Lustre
file system input and output figures look as expected for
a simulation that should only exhibit large file I/O during
the initial read of the computational mesh and one that
shouldn’t pause computations. The interesting figure is the
active memory profile depicted in the top of Figure 4. The
scores from Table II suggest Nalu [2] has plenty of spare

memory available across all nodes and that it may not be
well balanced in this configuration. The memory profile
details the memory spread of the 512 nodes during the
approximately 23-minute wall time simulation. The spread
exhibited accounts for about 10% of a node’s memory (6.4
GB). The approximate mean of this spread is 25% of a
node’s total memory (16 GB). So, this spread is 16±3.2
GB, or 16±20% if the percent is with respect to the mean.
This spread is larger than expected and no similar memory
statistics are provided by Nalu to the user to compare.

Figure 4. Profiles for a Nalu 512 node job. Active Memory (1st); CPU
user (2nd); Lustre reads (3rd); Lustre writes (4th). The CPU utilization value
greater than 100 is an artifact due to a missing data point.

For this simulation, the inertial mesh decomposition
method was used; this method divides the vertices into sets
of equal mass by planes orthogonal to the principal axis and
is the default method for Sierra applications. The memory
spread may be due to algorithms within Nalu and/or it may

be due to the mesh decomposition. The smallest piece of
decomposed mesh is approximately 83% of the size of the
largest one. Ergo, the spread is likely a combination of both.

Ideally, there would be no memory spread. Its presence
indicates the need for additional profiling to better under-
stand its root cause, how to reduce it, and the adverse
impact it may have on the time needed to complete the
simulation. The active memory profile, in this context, is
extremely useful to the user, who may be able to influence
it by changing solvers or decomposition methods, and to the
developer, who can leverage the profile during development
to help optimize its characteristics.

2) CTH: The one Hertz profiles for a CTH [3] 7,200
PE simulation are shown in Figure 5, with the two Lustre
profiles repeated with annotations in Figure 6. The scores
from Tables II and III indicate CTH has very well-balanced
memory demands and moderately good Lustre usage and
balance. There are two types of restart files written: simula-
tion time-based files (RESTART, i.e., rsct) and wall time-
based files (BACKUP, i.e., brct). CTH Spymaster data files
(SAVING, i.e., spct) are written periodically throughout
the run containing pressure, density, etc.

Figure 5. CTH 450 Node Job: Active Memory (1st); Lustre reads (2nd);
and Lustre writes (3rd).

CTH uses an N-N I/O pattern (one file per processor)

for managing restarts and Spymaster data. In this example,
7,200 new wall-time-based restart files are created and
written at every backup time. However, the 7,200 CTH
Spymaster data files are created only at the beginning of
the run (cycle 0) and then appended to during the run. The
Spymaster data I/O behavior is considerably different and the
Lustre profiles show this nicely, giving very good insight into
I/O sizes and patterns. There are 12 writes of the Spymaster
data in the 19 minute run (the write size is small at just a few
MB each time). At the next scheduled update of Spymaster
data (cycle 240), a read of some information in the 7,200
files stored to disk is required in order to append the new
data to the existing data. The first three reads (cycle 240,
279, 315) show an increasing trend in the size of data read
(30 MB, 60 MB, 90 MB respectively). All of the remaining
8 reads show a stable read size of approximately 120 MB.
Without these profiles the user might mistakenly think that
the application is just periodically writing a small amount of
data and discount the effects of a busy Lustre file system as
inconsequential when in fact the reads are much larger than
the writes and a busy file system could adversely impact
application performance.

Cycle 0

Cycle 315 Cycle 1181 Cycle 753

History file

Setup

All reads are associated with
spy data (with the exception of
setup and history file)

Read

Write

Walltime-based
restart (2 of 2)

Append new spy
data (3 of 12)

Cycle 0

Cycle 315

History file

Cycle 1200
Simtime-based
restart (1 of 5)

Matching read/write pattern for spy data

Figure 6. CTH I/O event chronology of Figure 5, annotated. Lustre file
system read (top) write (bottom).

3) Sierra/SolidMechanics: The scores for this Adagio [4]
run indicated it is well balanced in memory, moderately
balanced in I/O and a heavy user of Lustre. One Hertz
profiles collected during execution of a 1,024 PE simulation
of Adagio are shown in Figure 7. The percent CPU user plot
shows a drop halfway through the simulation that correlates
well with the increased percent of CPU spent in I/O wait

in Figure 1(top). The Lustre writes of results data in a N-N
pattern used by Adagio are impacting CPU utilization. We
know from instrumentation of Adagio with the mpiP [5] tool
that a large fraction of the run time is spent in MPI due to the
complex message exchanges required by contact algorithm
computations. The jump in Lustre bytes written (Figure 7
(bottom)) towards the end is related to the mpiP data that is
dumped to the file system at the end of the simulation by
MPI task 0. The memory profile shows good load balance
except for the jump at the end of the simulation which is
attributable to MPI task 0 collecting the mpiP profile from
all the other MPI tasks into local buffer for file output.

Figure 7. Adagio 64 Node job. Active Memory (1st); CPU user (2nd);
Lustre reads (3rd); Lustre writes (4th). One node is responsible for both the
memory peak at the end of (1st) and the bytes read at the end of (3rd).

4) Memory and System Throughput Use Case: Sandia
initially procured Chama with 32 GB of RAM per node.

In 2013 this memory was upgraded to 64 GB per node.
The decision to upgrade the memory was based on two
considerations: 1) the possibility of significantly improving
the job throughput by encouraging users to resize their
jobs to require fewer nodes while using more memory on
each node, and 2) to minimize the number of jobs that
encountered OOM terminations, often seen after substantial
amount of node hours already logged by the job.

The 1st consideration above is reasonable given that some
applications experience higher parallel efficiencies when
restructured to use fewer nodes because of their scaling char-
acteristics. The computations-to-communication-time ratio,
which impacts parallel efficiency, increases in this case.

From analysis of the memory utilization of jobs we
discovered that a significant number of jobs were not taking
advantage of the increased memory. Users often pick the
number of nodes (i.e., the degree of parallelism) empirically
to minimize wall clock time to solution and complete their
investigations expeditiously. Rarely there is such a drastic
resource modification that they need to re-evaluate.

Figure 8. LAMMPS 256 nodes. Memory usage is a small fraction of
that available. CPU utilization data (unshown) suggests that the application
is CPU bound and hence, while decreasing the number of nodes may not
benefit its individual runtime, it is a candidate for investigation of improving
overall machine throughput by decreasing the node resource request.

Top users, in terms of node hours, who were seen to be

using relatively little memory were encouraged to experi-
ment with their resource requests and resize their jobs to use
fewer nodes. Resource utilization profiles for an instance of
one application (LAMMPS) involving 256 nodes (20% of
Chama) are shown in Figure 8. There is significant memory
headroom to support a reduced node request (Memory
Usage score = 2). Because the application looks CPU bound
(unshown) the runtime was expected to increase. Since this
user runs many jobs of this size, he and his application were
considered good candidates for investigating the possibility
of an overall throughput increase.

In this case halving the number of nodes resulted in only
a modest increase in wall time (10 versus 8 hours per job or
a 25% increase). Note that any increase less than 100% is a
net savings in the number of available nodes and increases
the overall system throughput.

Additionally, where simulation studies involve multiple
runs of an application, although the run time of an individual
job when using fewer nodes may increase, the user may
experience faster completion of their ensemble of jobs.

As a result of this investigation the user has revised his
resource allocation requests and is utilizing fewer nodes
since the increased runtime is more than offset by even the
reduced queue time, i.e., waiting for fewer nodes.

5) Understanding out-of-memory conditions: A signif-
icant cause of job failures on our HPC systems is ap-
plication processes being killed by the Out-Of-Memory
Killer (OOMKiller). System administrators had very limited
insight into running applications resource demands including
memory before we began our continuous monitoring.

Figure 9 shows two different jobs’ memory profiles in-
cluding run-away memory demands (top), and large imbal-
ance in memory demands and abrupt changes (bottom).

These profiles also have value from the system architects’
and buyers’ perspectives as well. Substantial OOMs alone
are not a clear sign that increasing memory would be
of benefit to the system users. Profiles can help to draw
attention to root causes of OOMs.

A case which regularly triggers OOM events with a mem-
ory utilization profile that might drive a more sophisticated
response to memory demands than just use of larger resource
allocations is presented in Section V-B6.

6) Gaussian: As in Section V-B4, this case also involves
top users on the Chama system who were encouraged
to experiment with their resource requests. In this case,
however, this application frequently terminates early because
it runs out of memory.

Local users of Gaussian [6] and VASP [7], both electronic
structure codes, account for a substantial fraction of the
OOM errors on Chama. A representative active memory
profile for Gaussian is shown in Figure 10. As anticipated
from the aforementioned scores, Gaussian is seen to be
highly imbalanced in both memory and I/O (practically
all I/O goes through the single head node). VASP has

Figure 9. Examples of jobs killed by OOMKiller where profiles may yield
important behavioral insights: run-away memory demands (top); imbalance
and abrupt change in memory demands (bottom) (both 128 nodes).

Figure 10. Gaussian 4 Node Job: Active Memory profile shows imbalance
across nodes and across time.

demonstrated a qualitatively similar memory profile. There
is a clear change in the resource demands of the application
during its run time. The first phase may run for multiple
days, with the job ultimately killed due to the significantly
increased memory demand in the second phase. In addition
the memory demand is imbalanced across nodes over the
whole run. This is observed in the memory scores (Peak
Usage of 7, Balance of 1, Usage of 2) and in the plot.

Discussions with the users revealed the memory demand
in the second phase drives their allocation request. While
they submit the run as a single job, the two phases of the
computation (energy levels calculation and DFT) could be
separated if there were some benefit in doing so. In addition,
they were unaware of the memory imbalance.

File system I/O for the application is dominated by the

Figure 11. Gaussian: Lustre Reads (1st) Writes (2nd) on a per-node basis.
Accumulated Lustre reads and writes (3rd).

same node that exhibits high memory utilization (Figure 11).
Reading and writing occurs throughout the run with signifi-
cantly large values in the second phase. Accumulated reads
and writes are shown in the bottom of Figure 11. Over 2
TB is read over the lifetime of this job.

Imbalanced memory demands over the lifetime of an
application and imbalanced I/O demands across the appli-
cation nodes can inform better options for application-to-
resource mapping, both from the point of view of system
users and system architects. As a result of this analysis we
have recommended the addition of high memory nodes in
future purchases to accommodate these needs.

VI. RELATED WORK

Many HPC monitoring systems exist. The comparison of
LDMS to other systems is provided in [1].

A joint international consortium supports the HOlistic
Performance System Analysis project. HOPSA[8] shares
many of our goals (better application and system under-
standing), but takes a different approach. A combination

of light- and heavy-weight application-level profiling tools
is applied to measure individual application behavior. The
data for all applications is aggregated in a database for
analysis by the user or administrators. The data collected
may vary in frequency and metrics from job to job; this may
make analyses aimed at identifying contention for shared
resources more difficult. In some cases, the user’s binary
is modified or rebuilt and data collection overheads may
become significant, but it can distinguish individual tasks
co-scheduled on the same compute node.

The TACC Stats/HPC Report Card [9] project shares
many of our goals. TACC Stats is used by admins for under-
standing, but the data is aggregated nightly and hence cannot
be used for run-time and immediate post-run understanding.
The collection interval is on the order of 10 minutes so the
dynamics of resource conflicts are lost.

Allocation and scheduling for non-competition of shared
resource demands has been recognized, particularly in cloud
environments where multiple virtual machines may share the
even the same node. Characterization of peak and average
workload resource demands for this purpose is reported fre-
quently as part of cluster provisioning and VM management.
The more general scoring we do here is more in alignment
with the style of Intel’s VTune OpenMP scalability analysis
[10]. We seek higher-level metrics that can also be used
for users to gain insight into their simulation configuration,
developers to gain insight into the scalability and production
uses of their codes, system administrators to gain tactical
insight into the applications and their needs across the whole
system, and future procurement and development planners
to gain insight into the strategic needs of the wide array of
applications on all of the supported HPC platforms.

VII. CONCLUSION

Using data from Chama, a 1,232-node HPC system, we
have demonstrated that continuous, synchronous, whole-
system monitoring can provide the ability to do meaningful
profiling of system and application resource utilization on
production systems. Through examination of system and
application profiles we have shown how this information
can be used to drive more efficient platform utilization
though better matching of applications to resources based
on a) user insights into imbalance and resource demands
that can be used in addressing performance issues and in
allocation requests and b) scheduling and resource allocation
decisions that can be made by the RM based on knowledge
of application resource demands and how those can lead to
contention with other concurrent applications. Further, we
have shown how knowledge of a site’s workload profile can
be used for procurement decisions based on evaluation of
resources that are under/over provisioned. Finally we have
shown how such information can be used in troubleshooting
issues by both the admins and the users.

While we have been providing the user with profiling
plots and statistics at the termination of each job, we are
working on a web based interface to this same data. The
application scoring provides an easy entry point to draw the
attention of users to possible areas of improvement for their
application to resource matching, to draw the attention of
admins to potential problem jobs and inefficiencies on the
system, and to eventually be used in an automated fashion by
resource management systems. We are currently expanding
and refining the application scoring in order to hone in on
the sweet spot for the metrics under consideration.

ACKNOWLEDGMENTS

The authors thank Ken Lord for feedback on improving
the usefulness of profiles to users experiencing job failures
due to OOM and Aidan Thompson, Michael Foster, and Dan
Spataru for participation in and feedback on the memory
usage vs throughput study.

REFERENCES

[1] A. Agelastos, B. Allan, J. Brandt, P. Cassella, J. Enos,
J. Fullop, A. Gentile, S. Monk, N. Naksinehaboon, J. Ogden,
M. Rajan, M. Showerman, J. Stevenson, N. Taerat, and
T. Tucker, “Lightweight Distributed Metric Service: A Scal-
able Infrastructure for Continuous Monitoring of Large Scale
Computing Systems and Applications,” in Proc. IEEE/ACM
International Conference for High Performance Storage, Net-
working, and Analysis (SC14), 2014.

[2] Sandia National Laboratories, “spdomin/Nalu,”
https://github.com/spdomin/Nalu.

[3] J. M. McGlaun and S. L. Thompson, “CTH: A Three-
Dimensional Shock Wave Physics Code,” International Jour-
nal of Impact Engineering, vol. 10, pp. 351–360, 1990.

[4] SIERRA Solid Mechanics Team, “Sierra/SolidMechanics
4.22 User’s Guide,” Sandia National Laboratories, Albu-
querque, New Mexico 87185 and Livermore, California
94550, Technical report SAND2011-7597, October 2011.

[5] J. Vetter and C. Chambreau, “mpiP,”
http://mpip.sourceforge.net.

[6] M. J. Frisch et al., “Gaussian 09 Revision D.01,” Gaussian
Inc. Wallingford CT 2009.

[7] “Vienna Ab initio Simulation Package VASP.” [Online].
Available: http://www.vasp.at/

[8] B. Mohr, V. Voevodin, J. Gimnez, E. Hagersten, A. Knpfer,
D. Nikitenko, M. Nilsson, H. Servat, A. Shah, F. Winkler,
F. Wolf, and I. Zhukov, “The HOPSA Workflow and Tools,”
in Tools for High Performance Computing 2012, A. Cheptsov,
S. Brinkmann, J. Gracia, M. M. Resch, and W. E. Nagel, Eds.
Springer Berlin Heidelberg, 2013, pp. 127–146.

[9] J. Hammond, B. Barth, and J. McCalpin, “TACC Stats/HPC
Report Card,” http://www.mcs.anl.gov/events/workshops/
iasds11/presentations/jhammond-iasds.pdf.

[10] “Vtune openmp scalability analysis,”
https://software.intel.com/en-us/intel-vtune-amplifier-xe.

