New Systems, New Behaviors, New Patterns:
Monitoring Insights from System Standup

J. Brandt and A. Gentile
Sandia National Laboratories
Albuquerque, NM.

Email: (brandt|gentile) @sandia.gov

C. Martin

Abstract—Disentangling significant and important log mes-
sages from those that are routine and unimportant can be a
difficult task. Further, on a new system, understanding correla-
tions between significant and possibly new types of messages and
conditions that cause them can require significant effort and time.
The initial standup of a machine can provide opportunities for
investigating the parameter space of events and operations and
thus for gaining insight into the events of interest. In particular,
failure inducement and investigation of corner case conditions
can provide knowledge of system behavior for significant issues
that will enable easier diagnosis and mitigation of such issues for
when they may actually occur during the platform lifetime.

In this work, we describe the testing process and monitoring
results from a testbed system in preparation for the ACES Trinity
system. We describe how events in the initial standup including
changes in configuration and software and corner case testing
has provided insights that can inform future monitoring and
operating conditions, both of our test systems and the eventual
large-scale Trinity system.

I. INTRODUCTION

A primary source of information available to system ad-
ministrators for troubleshooting problems in High Performance
Computer (HPC) systems is the aggregate set of log files.
These range from messages of interest from a security per-
spective, to warnings of sensor thresholds crossed, to error
and failure messages for both hardware and software. On a
large system there may be hundreds of millions of such log
entries per day with the majority being benign. Over time,
a system administrator will learn the ramifications of new
features of the machine and which log entries are meaningful
and what vendor specific tools can be utilized to expose
problems and causes. However, each new system typically
has enough differences to make initial troubleshooting and
root cause analysis a challenge and new problem indicators
may be discovered over a machines lifetime. Such differences
stem from causes including but not limited to different and/or
upgraded Operating Systems (OS), compilers, applications,
hardware, file systems, network infrastructure, etc. Different
developers encode diagnostic messages differently. Vendor
specific hardware related messages will necessarily be different
due to different device names and vendor terminology.

While new systems present challenges with respect to
understanding behavioral and diagnostic characteristics, the

Sandia National Laboratories is a multi-program laboratory managed and
operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear
Security Administration under contract DE-AC04-94AL85000.

Los Alamos National Laboratory
Los Alamos, NM.
Email: c_martin@]lanl.gov

J. Repik N. Taerat
Cray, Inc. Open Grid Computing
Email: jjrepik@cray.com Austin, TX.

Email: narate@ogc.us

standup and acceptance process provides unique opportunities
to enable necessary insights. This testing phase is particularly
dynamic with respect to software installs, configuration, hard-
ware replacement, stress testing, and corner case investigation.
Appropriate investigation and analysis in this controlled envi-
ronment can provide insights into behaviors and issues, and
into what log information is useful for warning and diagnosis
in the future.

In this paper, we present insights gained during the ac-
ceptance testing and standup for one of the advance test
platforms (Mutrino) of the upcoming New Mexico Alliance
for Computing at Extreme Scale (ACES) Trinity Cray XC40
platform. While specific results address the new functionalities
and behaviors of this platform, we more generally target
the issues of new features in hardware, software, and HPC
subsystems and how those manifest themselves in higher level
concepts in thermal, electrical, and performance areas.

The rest of this paper is arranged as follows. In Section II
we describe more about new features of our system and
how they are anticipated to impact funcationalities of interest.
In Section III we describe the testing during our standup
process. Machine layout is described in V. In Section IV we
describe complexities of the log data sources on the Cray
XC platforms and how we utilize our tools for analyzing
such data. In Section VI we present insights gained from the
standup and acceptance process and how they have enhanced
our understanding and informed future monitoring. Finally, in
Section VII we summarize and discuss future work.

II. REFERENCE SYSTEM DESCRIPTION

While the concepts presented in this paper are generally
applicable to new HPC systems, we exemplify their applica-
bility by presenting our own new system scenario. This section
describes the new system we will be using as a reference in this
work, with particular emphasis on the differences between this
and our previous system that on the surface might be viewed
as insignificant. These differences result in new and different
failure mechanisms as well as give rise to new log messages
and behaviors that can be utilized to detect and understand
system problems. The following five subsections each present
a differentiating feature as well as some of the characteristics
that may change due to that feature. The remainder of the
paper addresses how these features are tested for acceptance
and how this testing exposes associated problem indicators that
can then be used throughout the system lifetime to quickly

flag such problems during normal operation. In particular Sec-
tion VI presents use cases of how these differences impact our
monitoring of thermal, network, and electrical characteristics
using logs from the various subsystems. Note that each of the
differences described below may drive new log patterns while
previous patterns may or may not disappear.

A. New Processors

Our current HPC capability system, Cielo, is a ten thousand
node Cray XE6 with dual 8 core AMD Interlagos processors
per node. The initial deployment of our new system, Trinity,
is a ten thousand node Cray XC40 with dual 16 core Intel
Haswell processors. While we have other clusters with Intel
processors, this is the first instance we have of Haswell. The
Intel Haswell processor is significantly different from both the
AMD and previous Intel processors with respect to its thermal
and thermal throttling characteristics (Section VI-A3) and its
power capping capabilities (Section VI-C1). With these new
characteristics, come a whole new set of log messages to assist
in diagnosis. Use of new feature related messages is explored
in each of the aforementioned sections. Characteristics af-
fected: performance, thermal, and electrical due to packaging
and new features (e.g., power capping, p-state setting)

B. New Interconnect Features

While Cielo utilized the Cray Gemini interconnect config-
ured in a 3D torus, Trinity’s interconnect uses the Cray Aries
interconnect configured in a Dragonfly [1], [2] configuration.
While some of the features of these two interconnect technolo-
gies are similar, there are large differences in message logging,
performance counters, error handling, adaptive routing, and
hot swapability. Additionally the network topology being so
different will necessitate new tool development for understand-
ing congestion related performance changes. With respect to
the interconnect, this paper focuses on the Aries related log
messages experienced thus far in our testing and how they
relate to possible problems in the system (Section VI-B1).
Characteristics affected: performance

C. New Packaging

Packaging can drive different observed behaviors. As the
HPC market has matured we have progressed from using
standard desktop boxes on shelves in racks to horizontal 1U
servers in racks to blades in chassis in racks. The trend is
toward higher and higher densities. With these high densities
packaging and resultant airflow become important concerns.
In Cielo a rack consisted of three chassis of vertical blades all
cooled by bottom to top airflow. This resulted in increasing
temperatures for nodes as their rack height increased. Trinity,
by comparison, consists of racks of blades placed horizontally
in the rack with transverse airflow. The layout is described
in Section V. Blades are half rack width so there is still a
temperature differential between the intake air of left and right
hand compute node blades (Section VI-A3). Characteristics
affected: thermal and performance due to CPU throttling

D. Water Cooling

Our Cielo system utilized an underfloor cold air plenum
to supply cooling to the compute nodes and thus as long as

long as the chiller plant was supplying cold air the nodes were
cooled. With Trinity, the cold air is supplied via cooling coils
attached to the side of each rack which contain active water
valving and a feedback loop to maintain a setpoint temperature.
This arrangement means a whole new layer of monitoring and
control is needed. Thus additional information with respect
to water pressures, flows, and temperatures as well as fan
speeds and resulting air temperatures is present on Trinity
that was not on Cielo. Additionally this information must be
analyzed in the context of appropriate chiller plant information
to ensure correct interaction and operation of the system as a
whole. Water data is reported via SEDC [3] and includes valve
openings, water pressure, and water temperature, in addition
to air related data (temperatures, fanspeeds, etc). We consider
the interaction of site facilities and machine and machine
responses in Section VI-Al. Characteristics affected: thermal
and performance due to CPU throttling

E. System Software

System software and firmware can undergo significant
changes as vendors fix bugs and add features. These changes
can thus change a system’s behavioral characteristics including
diagnostic messages. Section VI-C1 and Section VI-A2 present
some observed changes in the behavior of Mutrino as it was
transitioned to a new version of system software. Such changes
accentuate the desirability of re-running the same battery
of acceptance tests, including corner cases, to understand
the new behavioral characteristics and associated indicators
following significant upgrades. In general this testing can be
accomplished on a representative test-and-development system
such as Mutrino. Characteristics affected: thermal, electrical
and performance due to how cooling and power capping are

handled

III. TESTING

This section presents a high level description of the set of
tests used to characterize system behavior as well as identify
weaknesses and failure modes. In particular we were interested
in application and filesystem functionality and performance as
well as the system’s thermal and electrical properties under
various workload scenarios.

A primary reason for building ever larger HPC systems is
increased aggregate performance. Thus our application perfor-
mance testing includes representative applications and we look
for acceptable runtime performance. Additionally we exercise
new features in the Aries network (warm swap) and Haswell
processor (limiting power draw of an application through
runtime modification of clock frequency). These experiments
are designed to ensure functionality and enable understanding
of the limitations of these capabilities as well as our visibility
into how well they are working.

Understanding thermal characteristics of the system is cru-
cial to efficient operation and overall application performance.
Thus we identified log entries indicative of thermal problems
that show up under both high computational load and during
simulated failures. Sections VI-A3 and VI-A1 show how these
logs can be used to identify when there are problems. Further
such correlations, established during testing, can be utilized
for quick root cause analysis during normal operations.

The two primary electrical related behaviors we present
here are related to power capping and simulated power failures.
Power capping behavior is becoming increasingly important as
systems grow in size and the system power draw becomes a
significant fraction of a site’s aggregate power draw. This can
have consequences with respect to cost and stability. Thus it
is important to understand how well power can be controlled,
its variation across components, and its impact on application
performance. Power failures local to a set of nodes or system
wide can occur without warning for a variety of reasons (e.g.,
power supply failure, utility power outage, lightning strike).
Knowing how this will affect a system and how to properly
bring it back online is the motivation for the electrical failure
testing described in Section VI-Al.

IV. LoG DaATA

Examination of log data is a standard approach for gaining
information about system errors, states, and behaviors. Log
data contains a variety of information including: standard
OS related information (e.g., user logins, scheduler events,
OOM messages), vendor/hardware specific information (e.g.,
network technology specific events), and occurrence data. The
latter may include items that are clearly errors, notifications
where the ramifications may not be readily apparent (e.g., CPU
throttle, Processor Hot), and warnings that are clearly about
problem conditions but without indication of the severity of the
condition which induced them. Messages about components
(e.g., mezzanine), may require knowledge of the architecture,
which is not universal across platforms. Further, documentation
covering the full scope and ramifications of these messages
generally doesn’t exist. As a result, discovery and interpreta-
tion of events of significance within logs can be difficult.

A. Cray Log Data

On Cray XE/XK/XC compute platforms, most log data
resides on their System Management Workstation (smw).
While this provides a single point of access to the data,
the log file organizations and formats are not conducive to
direct consumption by general analysis tools. There are at least
20 different event log files in directories and subdirectories.
While most of these are text, some logs are in binary format
and vendor specific utilities are required to parse them (e.g.,
hwerrlog file and the xthwerrlog utility). Many log messages
are in multi-line format but require examination as a unit for
understanding. Some text logs are not in rsyslog format (e.g.,
netwatch) while many log analysis tools depend on that format.
While logs are typically divided by source and/or topic, we
have found messages on certain topics in unexpected places
(example in Section VI-CI1).

In addition, Cray’s System Environment Data Collections
(SEDC) [3] consist of 10’s of more logs of numerical com-
ponent (e.g., CPU, DIMM) related characteristics such as
temperatures, voltages, power, and cooling data. They also
include environment related information including fan speeds,
air velocities, water temperatures, valve openings etc.

An additional complexity to log analysis is that the smw
controls a number of functions of the system and hence its
access is restricted and it is not intended to support com-
putationally intensive analysis as this could interfere with its

control functions. Cray has implemented their Lightweight Log
Manager (LLM) [4] functionality, which is a wrapper around
rsyslog supporting a simple configuration command to forward
Cray logs from the smw to a site log host. However, we
have found that LLM does not result in an identical setup
of the logs on the remote host (e.g., logs handled via specific
network ports on the smw, like the controller logs, are not
forwarded to those same ports on the site log host). Thus
log analysis tools targeting specific file sources on the smw
may have to be altered on the log host. In addition, LLM
does not by default forward the SEDC data. Finally, because
the Cray infrastructure reinstalls or rewrites some of the
configuration, Cray does not recommend direct alteration of
rsyslog configuration files. This makes additional user tuning
of rsyslog on the smw (e.g., directing certain logs to specific
ports only) more difficult and potentially not possible.

B. Log Data Pattern Extraction for Analysis

Effective log data analysis requires not only identification
of events of interest but also making correlations and as-
sociations between events. These tasks become harder with
increases in data volume and number of disparate log file
types. The problem is further exacerbated by the existence
of multiple line log messages. Unraveling the correlative
relationships can be particularly challenging for new systems
or new configuration scenarios where the scope and meaning
of possible messages may be unknown. As a reference point,
over the time frame of the data of this paper (< 100 days) our
single cabinet Cray XC40 system (2/3 populated) produced
over 120 million lines of text log data. The implications of
this with respect to Trinity’s final size of 200 cabinets is the
possibility of over 2 billion log lines per day to wade through.
This doesn’t include the scheduler logs nor the ones in binary
format. The number of lines per file type per day are shown
in Figure 1. A shorthand has been used to designate files that
reside under the controller and dated pO subdirectories
of the main log directory.

In this work, we are primarily considering text log data.
There are a number of open source tools for assisting with log
file content discovery (e.g., Baler [5], HELO [6], Splunk [7]).
While Splunk is widely used for analyzing log data, it requires
the user to a-priori know their patterns of interest in order to
write filters to analyze their occurrence patterns. A problem
with this is that many such patterns are not known at system
standup and are discovered over time as problems emerge.
Both Baler and HELO perform deterministic discovery of
patterns in log data allowing the user to identify those that
bear further investigation as soon as the first occurrence. Baler
uses identified word lists (e.g., English words, additional words
of interest, e.g., Cray, i2c) from which to build the patterns.
We utilize Baler in this work and show how this type of tool,
in conjunction with further analysis (e.g., visual), can be used
to provide insight into the behavioral characteristics of a new
system where new log message types and patterns are still
being generated and are not known a-priori. In order to obviate
the issue of what types of logs reside in which files we stream
all logs to Baler, from the smw, regardless of source.

Baler reduced our log files to a few thousand patterns which
can be further reduced using similarity heuristics. We would
expect about the same number of patterns for the full scale

1.6e+06

b) DIMM errors 3/27 until replacment 4/2.
1.4e+06

1.2e+06 |

le+06 |

800000

600000

a) HW change 3/3 without
subsequent link tune
until 3/5. Aries errors.

Number of Lines per File Type

400000

200000

1.2e+07

Date (YYYYMMDD)

event
logsystem s
power_management e
smwmessages
controller/bios e
pO/console
pO/compute m—

d) Alps logging (typical).

p0/messages ===

c) Facilities pO/hetsv/iﬁig |:|_ i
testing. f) CLE upgrade. pO/gcimon —
S —

b —

e) Aries and resultant Lustre errors
4/15 until 4/30 blade reseating.

1e+07

8e+06 -

6e+06

4e+06

Number of Lines per File Type

2e+06

g) Increase in sesnor reading
failed messages 3/23 until — il
system restarts on 4/2.

L L
controller/messages ==

f) CLE upgrade. i

Fig. 1.

Date (YYYYMMDD)

Number of log lines per file type per day, for all syslog-formatted log files. Most files (top), controller/messages file (bottom). The latter is the major

contributor to the number of log lines after the CLE upgrade. Occurrences of events of interest are marked and discussed in the text. Multi-day events are

indicated by a line through the duration of the event.

Trinity system even with an aggregate daily volume in the
billions. The pattern companion figure of Figure 1 (bottom) is
Figure 2, showing the patterns for the same log source. There is
an initial discovery of new patterns at system startup (h) which
drops rapidly. New events and new software result in new
log lines and thus new patterns. In particular, installation of a
new version of the Cray Linux Environment (CLE 5.2 UP03)
(f) resulted in millions of log lines but not a commensurate
number of new patterns. Note that even when log lines contain
understandable words that bear investigation, they may be
difficult to find if one doesn’t know of their existence (see
Figure 3). Data reduction and testing under known conditions
is intended to help discovery of patterns of interest.

V. MACHINE LAYOUT

This section describes the machine layout and Cray naming
conventions used in the rest of this paper. An illustration of
the Mutrino physical layout is shown in Figure 7 (top). It
consists of one rack named c0-0. Each rack has 3 chassis
which are vertically stacked and are named c0-0cO through
c0-0c2. Each chassis consists of 16 blades, 8 on the left and
8 on the right. Blades reside in slots. The slots/blades in, for
example, chassis 2 are named c0-0c2s0 through c0-0c2s7
on the left, and c0-0c2s8 through c0-0c2s15 on the right,
bottom to top. Our system is not fully populated. Slots without
blades are populated with diffusers and are shown as X’s.

Blades are either compute or service. Compute blades have
4 nodes; service blades have 2. Service blades are in the left
of each chassis and, in our layout, are in each of the first
three slots, e.g., c0-0c0s0 through c0-0c0s2 and similarly
for each of the three chassis. The nodes in service blade
c0-0c2s0 are c0-0c2s0nl and c0-0c2s0n2. The nodes
in compute blade c0-0c2s12 are c0-0c2s12n0 through
c0-0c2s12n3, however on the blade the nodes are laid out
in the order (2,1, 3,0), front to back. The back of each
blade has an Aries router chip; Aries related components have
an a with subsequent identifiers after the blade name (e.g.,
c0-0c2s12a0116). Compute nodes have 2 processors and
service nodes have 1; these are shown as dots in the figure.
The figure is not to scale.

VI. USE CASES: NEW BEHAVIORS, NEW PATTERNS

This section presents use cases of how the testing and
maintenance during system standup to investigate new fea-
tures' has improved understanding of our reference system and

For completeness features (b) and (d) in Figure 1, which are typical, are
explained here. Feature (b): the increased verbosity in the console log is due
to DIMM errors. The DIMM had to be replaced and was done so as part of the
system shut down in the facilities testing on 4/2. The logsystem, pO/nird and
pU/messages log behavior is as that of feature (d). This is typical of when there
is an increase in the runs and hence the alps logging. There is alps-related
logging in those files.

<«—— h) Firstday of system standup.

a) HW change without
subsequent link tune.

150 H

Number of New Patterns

100 H

50 H

controller/messages =—=

f) CLE upgrade. 1

c) Facilities 1
testing.

Fig. 2.

Date (YYYYMMDD)

Number of new patterns per day for controller/messages only. Patterns are expected to be stable through time until new events occur. CLE upgrade

resulted in the discovery of new patterns, however, these are a small fraction of the number of new lines.

prw—x () A\

[alert |Module Health Fault]
Good! |NULL |NULL

% x—k—% *ixix|x|[Srciiix—+|pri:x|segnum:*|svc:
|Cause: x| Text:*|ALERT |[NULL|NULL|* is not
kernel - - -

Oops: * [#+]

cray-x: **WARNING«x*

cray-«:

/*/security/limits.» % require hard and soft file limits
greater or equal to + for proper = operation

cray—«: when large number of jobs are launched concurrently.
x: server #.x.x.+ not responding, still trying

« database not setup
Perform the following steps by hand:
% k—x=% xixix x=x x x: adding component to critical node fault list

«: Top * applications sorted by aggregate throttled ejection bandwidth

Top nodes involved with network congestion

% x—%—% xi1x:x x—x = Congestion candidate node *: (+ £lits/+) (+ +; no * list)

Kok—k—k kIR IH K=k K KD

« « of x blades reported timeouts during routing.
« You + need to reboot these blade controllers, or the blades out,
before trying again.

*

kernel - - - FAT-x (%): bogus number of reserved sectors

kernel - x-x - Cable is unplugged...

WARNING:
field.

Your /+/+ does not contain the » *
* will kludge around things for you, but you
should fix your /+/+ file as soon as you can.
Are the lustre modules loaded?

*—%—%:%:1%x BUG:

sleeping function called from invalid context at arch/x/+/fault.s:x

» setpoint was changed to *(x) to move down the dew point

Fig. 3. Example patterns possibly worthy of investigation, if one knew of
their existence. Variable, non-word data is indicated by *. Long patterns are
broken in figures where indicated by the double slash.

how that knowledge can impact our monitoring of thermal,
network, and electrical characteristics using logs from the
various subsystems.

A. Thermal

1) Facilities Testing: HPC systems today require extensive
facility cooling and power infrastructures. In order for HPC
data centers to be efficient and effective, the management and
monitoring must include not only the personnel who manage
the platform, but also the facilities operations personnel. These
individuals do not have direct access to the platform and
in general are unaccustomed to sorting and searching log
data. In this environment tools that can analyze data from
multiple sources quickly and inform operations personnel of
problems, when they arise, and the most probable causes is
essential. Discovery and use of appropriate log patterns for

use in dashboards utilizing filter-based tools (e.g., [7]) can thus
provide the runtime feedback needed for timely mitigation of
problems as they occur.

There were several tests performed on Mutrino that re-
quired analysis and visualization for confirmation of correct
platform and facility operations. The areas of interest for
operations included function of system during power loss,
power factor fluctuations, and function of platform with a loss
of cooling components. Note that the fan failure test resulted
in unexpected system behavior (i.e., water valve opening)
illustrating the value of corner case tests. These tests and their
results are described in Table 1.

In addition to determining how the machine would respond
to the simulated failures, we further wanted to understand
how the simulations would manifest themselves in the log
files in order to facilitate detection of issues if they were to
occur naturally. The tests resulted in feature (c) in Figure 1
and Figure 2, the latter indicating that new patterns occurred
because of the new event. These patterns are shown in Figure 4.
They refer to messages such as rectifier voltages too low,
blower temps too low, air velocity too low, etc. These messages
also gave us insight into the operating parameters of the
machine. In addition they report suboptimal values for fans and
rectifiers functioning and that the machine shutdown was in
response to the fan/rectifier situation. Note that some of these
cases would also result in changes in the SEDC numerical
data (e.g., valve opening) which we can additionally include
in monitoring.

2) DIMM Hot: DIMM Hot messages are of interest as
high temperatures may result in memory errors. DIMM Hot
messages occur in our logs only during boot or startup
and only began after the CLE upgrade (Figure 1 (f)). In
comparison, Processor Hot messages (Section VI-A3) are
reported over other times. The investigated correlation with
the booting/startup events makes it quite possible that this is
not a problem event; however, it is not clear if this is a new
behavior or just a new message. As in the induced facilities
testing (Section VI-Al), system changes result in new patterns,
so relying on user input for filter definition for items of interest
discovery isn’t an optimal monitoring approach.

Relevant patterns are shown in Figure 5 with association

TABLE 1. FACILITIES TESTS PERFORMED

Test Description

[Test Motivation

[Results

Simulate power loss a) at boot time, b) at idle, and c)
with machine at peak capacity. This was done by shunt
tripping the breaker that supplies power to the system.

We expect to have power loss due to environmental
factors such as lightning strikes. These are very common
during the summer months in New Mexico.

Platform shut down as expected with no hardware fallout.

Removed 12 rectifiers from platform.

The power factor of the system fluctuates. This test was
used to determine the impact to the power factor with
fewer rectifiers.

There was an increase in the power factor when these
rectifiers were removed.

Simulate one fans failure by shunt tripping the breaker
providing power to the fan.

There was no sequence of operations documentation and
the expectation was the other fans would speed up to
compensate. This test was to validate that happened.

The fans did not increase in speed; however, the chilled
water valve opened up to compensate. This led to ques-
tioning Cray on sequence of operations and they were able
to validate this was the correct response to a failed fan.

Simulate two fans failing by shunt tripping the breaker
providing power to the fan.

This test was to validate the cabinet platform would
power down as expected due to multiple fan failures.

The system responded as expected.

«:ix:ix|ec_sedc_warning|src:: *.x [below min]
«|pri:«|seqnum:x|svciiix—x x: x [above max]

’ | ALERT | FAN |NULL | Cannot detect blowers running,

* % |pri:+|seqnum:«|sve::is—x x:
* x:ix:ix|ec_sedc_warning|src::

- micro log:

- micro log:

N

micro log: ’/*|ALERT|NULL|NULL|Blower * not responding!|NULL|NULL’
K ok ok kikik.k xixispread-x.xix ik :WARNING: *:
micro log: ’«|x|Cannot detect blower fan «’
* ok 4 kikik.k xixispread-—s.xikix:INFO:#:

* May * Kikix.k miximokix:

INFO:Blower speed hardware value * (%)

% May * #:#tx.% xixix.x:1k:4:WARNING:Cannot get blower present state

kikix|x|STCiiia—w|pri:«|segnum:«|sve::

micro log:

Cannot detect blowers running, disabling rectifiers!|NULL|NULL.

* k—x—% #ix:x|ec_ll_failed|src:::x—x|pri:x|seqnum:«|svc::

Insufficient rectifiers present:x Required:*!|NULL|NULL.

* 4—%—* *x:x:x|ec_ll_failed|src:::x—x|pri:«|seqgnum:+|svc::
Minimum soft limit exceeded!|Data=+|Limit=x..

% k—4—% #ix:x|ec_l1_failed|src:::x—x|pri:«|seqnum:«|sve::
Minimum hard limit exceeded! |Data=+|Limit=x..

% k—4—% *:1x:x|ec_sedc_warning|src::x:«|pri:«|seqnum:«|svc::ii«-» *: x [health fault]

% k—k—% kixix|x|STCiiix—x|pri:x|seqnum:«|svc::

<min:*.x max:x.*> units: % | *:

:#%—* (%) [warn|Cabinet Controller Air Speed Fault]

.% [below min] <min:.* max:x.*> units: *

<min:*.* max:*.*> units: |
disabling rectifiers!|NULL|NULL"
’ % |WARN | FAN|NULL |Number of running fans in blower cabinet is too low! Expected fans:, Actual running:|NULL|NULL’

number of blowers running # is below the number of blowers to run *

shutdown the cabinet because not enough number of blowers running
does not match the software value.

set the speed to (%)

ix-x || INFO|Rectifier not responding in slot:x on shelfix.
/% | ALERT |NULL |NULL | Insufficient rectifiers present:* Required:x!|NULL|NULL’

:x—x (x) [alert|Cabinet Sensor Check Warning]|Cause:«|Text:«|ALERT|NULL|NULL| \\

|Cause: | Text:+|WARN|AIRSPEED | /data//+/+/*:%| \\

:x—* (%) [alert |Cabinet Controller Air Speed Fault]|Cause:x|Text:|ALERT|AIRSPEED|/data/«/+/+/+:%| \\

<expected:*> |
1x-x (%) [alert|Module Health Fault]|Cause:x|Text:«|ALERT|NULL|NULL|+ is not Good!|NULL|NULL

Fig. 4. Facilities testing patterns. The first two are representative of a number of variable values above or below min. Pattern variable data includes particular
sensor measurements (e.g., particular voltage sensors, fan speeds etc) relevant to the tests.

at the blade level since the source of this data is the controller
associated with the blade with the node/processor information
provided in the message where relevant. Only the populated
slots are labeled. Slots 0-2 for any chassis are populated with
service, not compute nodes, and do not report the hot patterns.

3) Performance and Temperature: As part of the normal
acceptance testing, HPL, a computationally intensive MPI im-
plementation of the high performance Linpack benchmark [8],
was run in two different CPU core allocation configurations (16
core, and all 32 cores) with the goal of validating performance
numbers associated with the Haswell processors and Aries
interconnect. As part of our monitoring investigation, we
focused on logs indicative of thermal issues.

Perhaps more significant than the Processor Hot occur-
rences reported in Section VI-A2, is temperature based CPU
clock throttling. Relevant log patterns with time and location
occurrences are shown in Figure 6. Across the 100 compute
nodes these patterns have only occurred on 11. Total throttles
are shown in the machine layout in Figure 7. In this figure,
the anticipated concerns of the airflow in Section II-C are
evident as there are substantially more throttles in the right-
most cores and also in nodes where the left and right slots are
both populated with compute blades. For some HPL runs, we
have seen CPU temperature variation of around 25° C across
the system and up to 10° C in the same blade even with no
thermal throttling occurring [9]. However, the hottest spots are
in accordance with the general characteristics of where the
throttling is occurring.

This investigation has further motivated monitoring in order
to more fully understand the performance and aging effects of
the temperature and throttling events. In addition, such moni-
toring also motivates operational decisions, for example, what

T T T T T T
€0-0c2s12 - H -+ HEE GHED o @ Ooma &S + I K BK
c0-0c2s11 |- EEEH-H HEER G-HO [] O3 8+ 38K ok K
€0-0c2510 - +H +HHH HEH EHH- + B HH + MK K
c0-0c2s9 - +H +HHH HEO+ GHO + + +HH B O K XK
c0-0c2s8 - +H +HHH HE+ GHO + B +HHB B O X XK
€00c254 - +H HHH H + G+ o+ COO0H BHE B K K K
€0-0c253 |- +H HHH HEH G+ + + HHB MK K RK
€00c252 - +H HHH H + + + HH O+ HH
c00c2s1 - +H HHH H + HE + + +HH o+ HH + H
c00c2s0 - +H +HHH H + HH + + +HH o+ HH +
c00cist |- ++ HHH HE+ GHO o+ O S\ + O3B K K
€00c1s10 [+ HHF H + HE + + HH OB K X
- c00c1s9 - Bt +HHH HEH HE o + oB +HHB B K X XK
= c00c1s8 - B+ +HHH HE+ OHE o+ + +HE HH K K K
US c00c1s7 - HfH +tHH HB+ OHO + oB BHE £ Ok kK 2K
? c00cIs6 -+ HHH H + GO + + HHB MK Ok R
c0-0c1ss |-+t HHH HEH+ GHO + + 4HB M Ok RK
c00cisd |- EE HHH HEE BED oo= Om B £ ok K
c00c1s3 — BE +HHH HEOE GHO + B BHE 4B EEX X XK
€00c1s2 - +H HH H + + + HH O+ HH 4+ H
c00cist = +H HH H + + + HH +
c0-0c1s0 [~ +H HHH H + + + A+
c0-0e0s11 - 4+ HHH H + +HH- + O + BHE H I X B
c0-0c0s10 - EHHI+HH HEIH EHHD + O OBHE H (I3 X 3
c0-0c0s9 - A +H+H HEOE OHEO + e: 3] BHE B M Kk BK
€0-0c0s8 — ++H +HH+ H + +HH + + +HE IE K BK
c0-0c0s7 |-+ HHH HEH OHO + o + B OHE B M kK
c0-0c0s6 |- ++H +HHH H + O + B HHE + MK K
c0-0c0s5 - +H +HH H + B-HO + =3 B + IME K K
c0-0c0s4 - EH +HH HEH GE0 + G O0+HE B 3 X X
c00c0s3 - ++ +HHH HEl+ O + + = +HB B K ok #K
€0-0c052 [~ +H +HHH H + HE + + 4+
€0-0c0s1 |-+t +Hi H + +HH + + A+
00050 HH—HHH 1 1 L
8 8 8 8 8 8 8 8
I I o o o o @ @
3 3 3 3 3 3 3 3
IS IS I I g g i S
] IS & IS S 3 3 2
< R < & R > S >
Date (YYYYMMDD) CLE
Bios Startup (green) DIMM Hot (blue) upgrade
Booting (red) + Processor Hot (purple)
Patterns:
% % - [%@x] BIOS startup
% x» — — x: node x—* is booting.
% % — - Node * interrupt +=x, *=%, =% *[+x]: » + % » + DIMM % & * Memory Hot =[+]:
% % % x % DIMM » & * Memory Hot *[x]: » % System Management «[x]: \\
% % % % + DIMM = & * Memory Hot +[*]: # % = % » DIMM * & x Memory Hot x[«]:
+ » Alert Over Temperature
% x» — — Node interrupt =+, *=%, *=x *[x]: * * x» * » DIMM % & * Memory Hot =[«]:
% % % % % DIMM » & % Memory Hot [#]: % % % % x DIMM % & * Memory Hot «[x]:
% % x % » DIMM % & * Memory Hot
% % - - Node * interrupt +=+, *=%, %=+ x[x]: » % x Processor Hot
% % - - Node * interrupt s=#, %=, #=% *[x]: » % % Processor Hot [x]: \\
% * Alert Over Temperature
Fig. 5. DIMM Hot patterns occur only during booting/startup and only

occur after the CLE upgrade. Processor Hot is reported throughout. (top).
Representative patterns relevant to this figure (bottom).

N\

A\

N\
ARY

T T T
c0-0c2512n3 - I —
s
s
c0-0c2slz2n2 - -
I T
c0-0c2s12n1 [~ I . I -
T n I T I
c0-0c2s12n0 |- iLe | B 4
Bl [} 1
il [} 1
T c0-0e2s11n3 |- -
e
3 il
2 il
I c0-0c2slln2 |- —
1 1
c0-0c2siinl I I —
m = !
c0-0c2s11n0 [- . -
g 1
c0-0c2s4n0 |- I . I —
I8 1
c0-0clsllnd [~ I . I -
I
I 1
c0-0c0511n0 L L 1 L L 1
3 B B B B B 3 B
5 % % & & % 5 %
s g z g g z z g
5 B 2 8 & Z g 2
3 2 3 2 2 ® 8 >
Date (¥V¥YMMDD)
Cpu Clock Throttle (Package Temp > Threshold) o
Cpu Clock Throttle (Cors Temp > Thrashold) O
Patterns:
*: Core temperature above threshold, + clock throttled (total events = =)
+: Package temperature above threshold, % clock throttled (total events = x)
Fig. 6. Occurrences of CPU clock throttled due to Core or Package

temperature above threshold. Only nodes for which a throttle occurs are
shown. Host format is Host .Core as a floating point. Each processor has
16 cores each with 2 hardware threads. In the case of Package temperature
above threshold messages, all 32 threads in that package send a message.
Since the core threads are numbered 0-15 and 32-47 for processor 0 and 16-
31 and 48-63 for processor 1, a split vertical green line represents a single
processor and a solid vertical green line represents both processors. The Core
temperature above threshold reports for both hardware threads but only on a
core granularity. Patterns are shown at bottom.

guidance should we give users about resource utilization and
location-based placement for highly computationally intensive
and performance sensitive applications?

B. Network

1) Aries: As part of the temperature based throttling (Sec-
tion VI-A3) investigations, the thermal grease on a node on a
blade was checked by pulling the blade, without a subsequent
network link re-tuning upon reinsertion. While this was not a
planned corner-case test, it is reflective of the fact that there
are many system checks and changes during standup that can
result in informative issues. We found a substantial number
of log lines in the netwatch files reporting link issues with the
onset of the errors traced back to this hardware checking event.
The occurrence is shown as feature (a) in Figure 1 with the log
lines in Figure 8. This was particularly informative for finding
out about network errors as we expect that it is unlikely that
we would see many network errors in the normal course of
events on a machine of this size.

The relevance of the first pattern in Figure 8 was
discovered via its frequency and proximity to other patterns.

1000

~ 100
)
0
a
@
<
© -
10
X%
%
XX XL K
- LR RREL L%
@ 85 KX XK %
a XX L
© 2 nodes per . 1
6 service blade. [.
3 bottom left
slots.
2 Sockets
S) per node KK 4 nodes per
@ X
2 X X compute blade
a P
a
@
<
Ol
. 10000
o X
s X §§ poses 1000
KL AN
SO
100
10
1
Fig. 7. Location of throttles in machine layout colored by to-

tal number of occurrences. Smallest circles indicate no throttles. Core
temperature above threshold (top); Package temperature
above threshold (bottom). Package temperature related throttles should
result in all threads per core for all cores throttling (e.g., 32 lines per
occurrence) although we have seen that not happen; however, as a rough
indicator of distinct occurrences divide the package occurrences values by 32.
There are generally more occurrences in the expected hotter locations.

The full text is cb_hw_error: failed_component
c0-0c2s12a0116, type 37, error_code

0x62ff, error_category 0x0. In the future, adding
the now known failed_component or cb_hw_error
to the dictionary, would make this pattern more obviously
meaningful. An analogous add could address the first pattern
in the bottom which is Time of last linktune.

All Aries issues do not result in lines in the same log.
Feature (e) in Figure 1 is a result of Aries errors on a par-
ticular blade that also resulted in Lustre errors (thus affecting
concurrent Lustre testing) in the console log. These cleared up
when that blade was reseated.

C. Electrical

1) Power Capping and Sensor Data Availability: Power
capping is a new feature in our capability HPC systems. From

tox k-, type ¥, x %, * %
1 MMR[*]=+

: handling failed link »—x
: adding link #-+ to x list

ok o % %
*
|
| |
*
ok % K

ok ok % %
ok o % %

last *: % * * xixix *
*—x *—x Info Router Input Queue saw /% error
* Lane Degrade, *:
Reinitialized By Peer
* CRC Error, =: » \\
w1 [%] waw—x [%] w.k—wx [*] k.ktw [k] w.xk—x
Aries » operating badly and will = shut down
Link Alive Went Away

Multi-Lane * CRC Error

f
*
* ke ek Info
* k% ok Info
*

e o Info

Fig. 8. Aries (reduced) error patterns. nlrd (top) netwatch (bottom).

a facilities and operations perspective, we are interested in
power utilization control. Thus power profiling and power cap
testing by interested researchers was included during Mutrino’s
standup. This team reported failure of the power cap command,
with substantially more frequent failure occurring after the
CLE upgrade. From a monitoring perspective, we are interested
in how to detect such failures and their causes from the
logs. In this case patterns relating to failure in the power
capping occurred, as expected in the power_management log,
but also in the controller/messages log. This is because the
communication to set the power cap is issued to the blade;
power capping then fails due to a communication failure [10].

Related patterns are shown in Figure 9. Log patterns
resulting directly from power capping related issues are shown
in the top (failure to occur, power budget exceeded). Possible
communication issues are shown in the middle. The latter 2
(too long for master) occur only after the CLE upgrade and
produced a volume of over 9 million lines in 5 days relating
to just 5 of the slots. The bad i2c value message occurs even
before the CLE upgrade, and accounts for 50 million lines.
These lines combined account for the majority of the increase
in log lines for the controller/messages after the CLE upgrade
(Figure 1 (bottom) feature (f)).

While investigating thermal issues, we noticed that some
of the same nodes that failed to power cap also failed to report
thermal data via SEDC. We also learned from Cray that some
of the SEDC data is obtained over the same network interface
that the power capping commands use [10]. These thus were
related symptoms of the same failure though the association
was only made due to investigation of both behaviors at the
same time. Patterns we believe are related to the failure to
get the sensor data are in Figure 9 (bottom) and account for
25 million lines. A similar occurrence of these lines is shown
in Figure 1 (bottom) feature (g) occurring before the CLE
upgrade, though not as frequently. In that case rebooting for
our facilities testing temporarily cleared up the error.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have shown that, while new systems
present challenges with respect to understanding behavioral
characteristics due to new features and unknown logging,
system understanding can be enhanced by appropriate mon-
itoring and analysis during new system standup, testing and
corner case stress testing. Specifics presented in use cases here
illustrate features of interest common to HPC systems, such
as processor technologies, interconnects, packaging, cooling
infrastructure and software changes, and impact thermal, elec-
trical, network, and performance characteristics.

: link -x reported as failed due to showing too many soft errors

Error enabling the * power monitor!

Node * power budget exceeded! Power=«+, Limit=+, Max Correction Time=x
Node * now within power budget. Power=#, Limit=«

Node * Warning: deleting temporary power policy ID #x failed

Error setting power policy ID # * to * watts

Node * Error setting power budget

Error disabling the x power monitor!Node * power budget set to + watts
Node * Error: setting temporary power policy ID #

T
[B A A

N |

«@x] =: : ERROR: error sending power profiles..

«@x] %: : ERROR: Error sending power limit..
kernel - - - %: x:x bad i2c * value, i2c x=x
kernel - - — : +:x waited too long for master, #==—x (%, * %, * %, * *)
kernel - - - *: x—% waited too long for master, *=—x% (% %, * %, * %, * %)
* % - - get_sensor_reading() failed with =*
% % - - %: get_sensor_reading failed with (x)

Fig. 9. Power capping related patterns (top). Possible diagnostic patterns
for communications issues (middle); the latter two occur only after the CLE
upgrade. Related inability to get sensor data suspected patterns (bottom).

We have recently installed a patch for the power capping
issue that Cray has backported to CLE 5.2 UPO3 for us. We
will investigate the effects of this patch on the reliability
of the SEDC data. We continue to investigate the potential
performance effects of the temperature issues, with and eye to
how they may vary in Trinity due to the fully populated racks.

Practical application of the specific insights from this work
will influence further operations and monitoring of the test
system and Trinity. The monitoring framework in design by
the ACES Trinity team incorporates all log and numerical data,
expanding on the sources mentioned here, including node level
and facilities data to obtain a more complete picture of system
behavior under normal and abnormal conditions.

ACKNOWLEDGMENTS

We would like to thank Kevin Pedretti (SNL) of the ACES
power team for power and thermal related testing and issue
reporting; Dave Morton (LANL) of the integration team for
discussions on temperature issues; and Dave Martinez (SNL)
and Ron Velarde (LANL) of the facilities team and Greg
Hamilton (Cray) who performed the Mutrino facility testing.

REFERENCES

[1] J. Kim et al., “Technology-driven, highly-scalable dragonfly topology,”
SIGARCH Comput. Archit. News, vol. 36, no. 3, pp. 77-88, Jun. 2008.

[2] G. Faanes et al., “Cray Cascade: A Scalable HPC System Based on a
Dragonfly Network,” in Proc. Int’l Conference on High Performance
Computing, Networking, Storage and Analysis (SC12), 2012.

[3] “Using and Configuring System Environment Data Collections
(SEDC) Cray Doc S-2491-7001,” 2012. [Online]. Available: http:
/ldocs.cray.com/books/S-2491-7001/S-2491-7001.pdf

[4] “intro_LLM man page,” Jan 2014.

[5] N. Taerat, J. Brandt, A. Gentile, M. Wong, and C. Leangsuksun, “Baler:
deterministic, lossless log message clustering tool,” Computer Science
- Research and Development, vol. 26, no. 3-4, pp. 285-295, 2011.

[6] A. Gainaru, F. Cappello, S. Trausan-Matu, and B. Kramer, “Event log
mining tool for large scale HPC systems,” in Proc. Euro-Par, 2011.

[71 “Splunk: Operational Intelligence, Log Management, Application
Management, Enterprise Security, and Compliance.” [Online].
Available: http://www.splunk.com

[8] “HPL.” [Online]. Available: http://www.netlib.org/benchmark/hpl/

[9] J. Brandt et al., “Enabling Advanced Operational Analysis Through
Multi-Subsystem Data Integration on Trinity,” in Proc. Cray User’s
Group, 2015.

[10] S. Martin and D. Rush, private communication, April 2015, Cray, Inc.

