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Abstract—Monitoring of High Performance Computing
(HPC) platforms is critical to successful operations, can
provide insights into performance-impacting conditions, and
can inform methodologies for improving science throughput.
However, monitoring systems are not generally considered
core capabilities in system requirements specifications nor in
vendor development strategies. In this paper we present work
performed at a number of large-scale HPC sites towards
developing monitoring capabilities that fill current gaps in
ease of problem identification and root cause discovery. We
also present our collective views, based on the experiences
presented, on needs and requirements for enabling development
by vendors or users of effective sharable end-to-end monitoring
capabilities.

Keywords-HPC monitoring; monitoring architecture; system
administration

I. INTRODUCTION

In machine acquisitions, monitoring is typically low-
priority, if not an afterthought. While much attention is paid
to potential component, sub-component, and sub-system

performance (e.g., node, memory, filesystem), limited effort
is made to ensure that information necessary to the continued
operations and performance of the machines as a whole
is made available in a meaningful way. The responsibil-
ity for identifying performance-impacting conditions at the
operational level and in production thus falls on individual
site’s system administrators and depends upon the resources
available to them. However, since application performance is
affected by system conditions (e.g., components performing
as expected, minimal network congestion), a lack of insight
into such conditions may have significant impact on the
production performance of a system. Furthermore, future
platforms’ specifications continue to be based on limited
information of the actual production demands of sites’
workloads; and the number and expertise of staff required
to manage the platforms increases as the systems increase
in size and complexity.

As a result, system administrators spend a significant
amount of time developing tools to provide necessary in-



sights. However, they are hampered by unavailability of
necessary data and insufficient understanding of the implica-
tions of system conditions on application performance. Such
availability and understanding requires the active, continued
participation of the vendor and component manufacturers
who can enable the needed interfaces and can provide insight
into the design.

In [1], a group of Cray sites presented monitoring capa-
bilities they are developing which have resulted in improved
understanding, performance, or operations efficiency. The
goal of that work was that promotion of such value-added
capabilities could drive the inclusion of monitoring as a core
capability of HPC systems. In that work, we specifically
addressed issues of data availability and usability that limited
progress and should be priority items in future monitoring
system requirements.

In this work, we extend the conclusions drawing on
our current state of monitoring, including those stories;
gaps that are impediments to additional progress; and our
visionary use cases and goals of monitoring to address
in detail needs and requirements for complete, end-to-end
monitoring capabilities, encompassing data sources, storage,
analysis, and visualization, and with accompanying archi-
tectural concerns. While the platforms of focus for this
group and for the work presented are from a single vendor,
the challenges, approaches, and a number of the tools are
generally applicable to any HPC system.

The remainder of this paper is organized as follows:
We present site-specific approaches to priority issues being
addressed by monitoring in Section II. We discuss the
spectrum of approaches, as they address gaps and goals
in monitoring in Section III and Section IV. Throughout,
we have highlighted in bold, key issues and takeaways.
Finally we discuss insights, needs and requirements based
on the presented approaches and experiences, to enable
development of sharable effective tools for large scale HPC
monitoring, analysis, and response in Section V.

II. IDENTIFYING SUB-OPTIMAL OPERATION AT LARGE
CRAY SITES

The sites participating in this work run large Cray sys-
tems and have independently developed mechanisms to help
ensure that user jobs run reliably and predictably on their
systems. The range of monitoring targets is wide since a
single run of an application may occupy thousands of nodes
and utilize tens of thousands of components across several
functional subsystems (e.g., storage, network). Anomalous
behavior in a component or subsystem often indicates a
problem in either some part of the system or in the appli-
cation or job specification and all of these sites monitor for
anomalies according to perceived or previously-experienced
sources of sub-optimal operation.

The efforts summarized below appear on the surface to
be site-specific approaches to identification of site-specific

problems (e.g., GPU performance, shared network perfor-
mance, shared filesystem performance) in operating large
scale HPC systems. Closer observation, however, reveals that
the differences are largely in the particular implementation
details and/or particular components or subsystems being
targeted while the types of problems are generally the same
across sites. More detail of the efforts and targets can be
found in [1]).

1) Los Alamos National Laboratories (LANL): Trinity is
a 20,000 node Cray XC40 system sited at LANL. To detect
anomalies as early as possible, LANL staff have developed
a suite of custom tests that are performed, system-wide,
on 10 minute intervals across all relevant components and
subsystems including but not limited to: configurations (e.g.
on burst buffer nodes); verification that essential services and
daemons are functional, including filesystem mounts; and
ensuring there is an appropriate amount of free memory on
compute nodes as well as available space in shared filesys-
tems. The results of the tests are displayed in a dashboard
which also presents significant log data occurrences, in order
to facilitate problem diagnosis.

2) National Center for Supercomputing Applications
(NCSA): Blue Waters is a 27,648 node Cray XE/XK system
sited at NCSA. In order to facilitate efficient use of system
resources, early detection of poor performance in critical
shared resources, comparison of performance metrics
over time (see Figure 1), and to minimize time to solution
when troubleshooting, NCSA actively collects data from all
major components and subsystems of Blue Waters at one
minute intervals. Collection times are synchronized across
the entire system. Additionally NCSA passively collects all
pertinent log messages generated on the system as they
asynchronously occur.

Performance problems in any of the three large shared
Lustre file systems can severely impact job performance and
system efficiency. Thus NCSA staff have additionally devel-
oped a set of probes that execute on one minute intervals
and measure file I/O and metadata action response latencies.
These target each independent filesystem component and run
from a distributed set of clients to exercise these operations
over representative data paths from all applicable software
environments. This provides a view into the current and
historical experience that the applications and interactive
users have when interacting with the filesystem.

3) National Energy Research Scientific Computing Center
(NERSC): NERSC hosts Edison and Cori, which are 5,586-
node and 12,076-node Cray XC systems, respectively. Like
LANL, NERSC regularly runs a suite of custom benchmarks
that exercise compute, network, and I/O functionality, and
publishes performance over time on its user-facing web
pages (illustrated in Figure 2). These enable staff to identify
abnormal or unsatisfactory behaviors in these subsys-
tems and take remedial action - which might include further
analysis to determine the root cause of the anomaly.



Figure 1. NCSA: Use of system wide continuous collection of performance data (injection of data into the network in this case) to enable comparison
of resource utilization between two periods of time where there were different scheduling and resource allocation strategies in effect. Shared network
resources are being utilized more after Topologically-Aware Scheduling (TAS) [2] was put into production (right) than before (left). This is shown by the
blue line representing mean bandwidth utilization as a percent of maximum and which is significantly lower over the pre-TAS time period (left) than when
TAS was being utilized (right).

Figure 2. NERSC: Custom benchmarks are regularly run to assess functionality and performance. Occurrences and onset of performance problems are
apparent in visualizations tracking performance over time and are used by staff to drive further investigation and diagnosis.

NERSC also monitors the batch queue backlog - large
or sudden changes in outstanding demand can indicate for
example a spike in jobs that fail immediately upon starting
(quickly emptying the queue) or a blockage in the queue
(quickly filling it).

Finally, NERSC captures large volumes of environmental
data about its systems and facilities, both for real-time
operational monitoring (power use, spare cooling capacity)
and for post-hoc research (e.g., one might correlate power
usage against applications).

4) Center for Scientific Computing (CSC): Sisu is a 1,688
node Cray XC40 system sited at CSC. Like NERSC, CSC
utilizes queue length monitoring and display, but in order
to provide users a realistic view into the expected wait
time for the currently submitted workload. CSC plans to

utilize characterization of queue length together with other
monitoring information to help identify and diagnose system
issues such as shared file system problems.

5) Swiss National Supercomputer Center (CSCS): Piz
Daint, sited at CSCS, consists of 5,320 XC50 nodes with
NVIDIA GPUs and 1,813 XC40 nodes without GPUs. In
order to validate the health of the GPUs in their systems,
CSCS also has developed a comprehensive suite of tests.
Their philosophy is that “no job should start on a node with
a problem, and a problem should only be encountered by
at most one batch job – the job that was running when the
problem first occurred.” In this case the test suite is run
before and after each job. If the pre-job health assessment
fails another node is chosen and the problem node taken
out of service for further testing and possible repair. If the



post-job health assessment fails, the problem node is taken
out of service for further testing and possible repair.

6) Oak Ridge National Laboratory (ORNL): Titan is a
18,688 node Cray XK7 system, sited at ORNL. Around
2.5 years into its production deployment ORNL began to
see an increasing rate of GPU failures. Following a lengthy
process of tracking failures and performing a variety of
in-depth component level diagnostics on the failed GPUs,
it was determined that NVIDIAs manufacturing process
for the SXM had not used sulfur-resistant materials. The
result was growth of crystalline structures which modified
the resistance characteristics of a small number of resistors
and caused malfunction. To ensure new and replacement
hardware is free of this issue, ORNL now monitors their
data center environment to ensure that ASHRAE standards
for particulate and corrosive gases are exceeded and enforces
the use of sulfur-resistant materials in their supplier’s Bills
of Material.

7) King Abdullah University of Science and Technology
(KAUST): Shaheen2 is a 6,174 node Cray XC40 located
at KAUST. The KAUST staff take a different approach to
monitoring for abnormal behavior on Shaheen2: to identify
poor performance, rather than devising direct tests of sub-
systems, KAUST utilizes power monitoring to accomplish
the same goal. Their power monitoring was originally in-
tended to enable them to understand the power requirements
of different applications and to stay within a particular
power budget while executing their workloads. However,
they found the power profiles of applications were repeatable
enough that they can, through profiling, characterization,
continuous monitoring, and comparison against power pro-
files of known good application runs, identify problems
with the system and applications. Anomalous power-use
behaviors within a job can also be used to detect problems
such as hung nodes or load imbalance (e.g., Figure 3).

8) Argonne Leadership Class Facility (ALCF): Theta is
a 4,392 node Cray XC40 system sited in the ALCF. ALCF
staff have written a tool called Deluge [3] to obtain data from
Cray’s Event Router Daemon [4] (ERD) and make it directly
available for analysis. ALCF is utilizing this information to
gain critical understanding of system state. Information
available from the ERD includes environmental data, and
both console and hardware error data. ALCF currently
performs trend analysis, using this data, on component error
rates (e.g., High Speed Network (HSN) link Bit Error Rates
(BER)) and the datacenter environmental conditions. Based
on these trends, ALCF personnel can flag and diagnose
unusual behaviors on component and subsystem levels.

9) Sandia National Laboratories (SNL): Researchers at
SNL in collaboration with Cray engineers and several
Cray sites have been investigating the use of functional
combinations of High Speed Network (HSN) performance
counters [5], collected periodically (1 - 60 second intervals)
and synchronously across a whole system, to determine

Figure 3. KAUST: Shaheen2 overall power usage (top); power usage per
cabinet (bottom) (from [1]). Load imbalance issue was detected with power
usage variation. Around 17-22 minutes, power usage variation of up to 3
times was observed between different cabinets and full system power draw
was almost 1.9 times lower during this period of variable cabinet usage.
This was rectified for subsequent runs.

congestion levels, congestion regions, and impact on
application performance. This work targets the Cray Aries-
based dragonfly networks and Gemini-based 3D torus, with
work under way to apply their approach more generally to
other technologies and topologies.

SNL, like KAUST, also investigates power profiling,
sweeping configuration parameters such as p-state, power
cap, node type, solver algorithm choice, and memory place-
ment, with the goal of improving application and system
energy efficiency while maintaining performance targets.

10) High Performance Computing Center Stuttgart
(HLRS): On their 7,712 node Cray XC40, Hazel Hen, HLRS
has worked with Cray to develop an approach for identi-
fying “aggressor” and “victim” applications based on
their runtime variability. Applications having high runtime
variability are classified as “victim” applications and those
running concurrently that don’t hit the “victim” variability
threshold are considered as possible “aggressor” applications
where the resource being contended for is assumed to be the
HSN.

III. SPECTRUM OF APPROACHES - ANALYSIS

In this section and the next we address key aspects of the
monitoring approaches taken by the sites.

Here, we identify commonality in the goals and ap-
proaches to analysis, visualization, and response taken by the



participating sites. We also describe common themes in the
challenges sites face when implementing these approaches.
These themes represent opportunities for vendors to enable
easier to use and more portable analysis and visualization
tools and to facilitate acting on the insights gained.

A. Data Sources – A Summary of Approaches

Three mechanisms are used by sites to identify poor
performing components, including applications and system
configuration:

• CSCS, KAUST, LANL, NCSA, and NERSC have
crafted benchmark suites whose constituent bench-
marks exercise specific components in the system (e.g.,
computational capability, memory bus bandwidth, file
system meta-data operations) and whose performance
metrics (e.g., time to solution, energy consumption)
enable identification of poor performance of those
features.

• ALCF, NCSA, ORNL, KAUST, and SNL also uti-
lize periodic or job launch related (pre-, post-) job
collection of performance counters and state registers,
and asynchronous hardware and console errors. These
can be obtained from a variety of sources including
the /proc and /sys file systems; the Performance
API [6] (PAPI); Model-Specific Registers (MSRs);
network performance counters; Cray’s ERD, System
Environment Data Collections [7] (SEDC), and Power
Management Database [8] (PMDB); and GPU specific
diagnostic tools (e.g., [9]).

• Information from the job scheduler or resource man-
ager, especially log files and queue depth information,
enables CSC and NERSC staff to identify anomalous
queue depth behavior which may be associated with
poorly performing components such as filesystems and
networks. This data source also enables HLRS oper-
ations staff to identify possible occurrences, causes,
and victims of HSN contention via information on
concurrently running applications and execution times.

B. Analysis and Visualization

Commonalities in analyses used at different sites and the
challenges addressed by each site to obtain them reveal
where vendors can add the most value to their monitoring
capabilities.

Currently most analyses implemented by sites seek to
assess current component state. This is fundamental for
operations and might be expected to be a basic production
functionality, but in each case sites have needed to develop
tests and infrastructure to enable continuous testing,
reporting, and response.

Sites have long been interested in early detection and,
ultimately, prediction of component degradation and failure
based on trend and outlier analysis. This has had limited suc-
cess in production; better ability to track component data

at rates that capture events of interest, and, through ven-
dor interaction, increased domain knowledge of expected
component behavior and performance interdependencies
may increase success in such areas.

Log analysis has significant research history involving
techniques of abnormality detection and/or variation in
occurrences of log lines. However, in production most
log analysis involves detection of well-known log lines.
Detection of conditions of interest and the best way to
represent them is a continuous process; new events and new
signatures for events may arise with new workflows which
stress the system in new ways, or with new versions of
system software which may present new or different log
messages. Thus, new or infrequent events may be missed
until manual observation of events leads to identification of
relevant log lines to include in the scan.

Events that propagate over components are especially
complex and might span long time periods - for example,
delays in recovery from HSN link failures may impact
other components using the HSN. These require a vendor-
supported understanding of the architecture and system
mechanisms along with an ability to associate log lines
across time periods.

Associating numerical or log events over components and
time is particularly tricky when a single global timestamp
is unavailable as local clock drift can result in erroneous
associations.

Lack of access to comprehensive data or log lines may
result in missed events or attributions; however analysis of
such large data may require distributed storage and analysis
capabilities for timely processing.

Users frequently request an explanation for observed
performance variation. Understanding and attributing this
variation has been reported [10] to be the highest priority
question sites seek to answer and is the motivator for
many current monitoring efforts at sites. Periodically running
benchmarks assists in detecting performance variation but
greater interaction with vendors is sought to better correlate
variation with relevant system metrics - for example
identifying components and conditions that might impact
application performance and, if so, to what extent.

Interestingly, sites may have the first large-scale instal-
lations of architectures, where issues may then first arise,
while vendors may only have limited access to local small-
scale systems for investigating the interplay of platforms,
system software, and applications. While investigation of
some essential issues (e.g., slow boot times, complex job
launch with Burst Buffer support) has been done on large
site installations as part of stand up and acceptance, sites
are increasingly interested in offering site resources for
collaboration with the vendor in investigating at-scale
performance and operational improvements, such as network
and filesystem contention performance impact analysis.

Dashboards for visualization of status are a common



practice across sites. Grafana [11] is currently a popu-
lar first order solution, due to its ease of configuration,
ability to graph live data, and ability to copy and share
dashboard configurations. However, individual component
graphs may decrease in value and performance as the
number of components plotted increases. Representations in
the context of the architecture, such as network-topology
representations, are being developed by sites and others
(e.g. [12], [13]) for these architectures, however visualization
of complex connectivities is a challenge. Reduced dimen-
sionality through higher-level aggregations (e.g., percentage
of components in a state, regardless of location) coupled
with drill-down capabilities can enable better at-a-glance
understanding.

Figure 4 shows how NCSA has used an aggregate (read
bytes/sec for an entire filesystem) visualization over time to
provide a direction for further investigation, coupled with
drill-down to show, at a selected time, the metric across
components.

NCSA also provides the ability to download both plot
images and the associated Comma Separated Value (CSV)
formatted data (e.g., Figure 5) to enable controlled release
of data to users. Even with per-job aggregation, per-
metric plots take up substantial screen real estate. Per-job
analysis requires storing and extraction of job allocations
and timeframes, which adds to storage and query complexity.
NCSA uses Google Charts [14], assembled via PHP, to
visualize data in real time. These appear to be stable in
handling visualization of Blue Waters scale of data and
present no critical server- and client-side dependencies.

C. Response

Systems, their components, and system software typically
provide some level of detection and response capabilities,
such as thermal throttling and re-routing around failed
network components. For more general cases and extensible
use, vendor-provided or widely available tools such as Cray’s
Simple Event Correlator [15] (SEC), Splunk [16] and Na-
gios [17] enable response when well-known conditions are
met, typically via regular-expression matching. Responses
are typically simple - such as issuing an alert or marking a
node as down - and the detection and associated response(s)
has been developed by sites.

More complex responses to more sophisticated condi-
tions of interest are envisioned. Notification to users of
assessments of system conditions is of interest but relies
on the proper analysis. Scheduling and allocation based
on application and resource state is an active area of
interest. Topologically-aware scheduling based on largely-
static routing rules has been implemented in production
(e.g., [2]). Power-aware scheduling seems likely to become
important with increasing scale. More generally, sites would
like the capability to perform more fine-grained and dynamic
resource allocations and task mappings. This would require

Figure 4. NCSA: Drill down capabilities enable investigation while limit-
ing screen real-estate requirements. Here high values of system aggregate
I/O metrics (top) drives further investigation into the nodes, and hence, the
job responsible for the I/O.

increased analysis capabilities and more complex interfaces
to schedulers and component/subsystem controls (e.g.,
downclocking components).

Clear potential financial gain may increase the priority
for development of such capabilities – for example, sites
envision the redirection of power between platforms and
even between other site resources based on both current and
anticipated needs.

IV. SPECTRUM OF APPROACHES - ARCHITECTURE

In this section we identify commonality in the goals and
approaches to monitoring used by the participating sites
in terms of architectural issues such as transport and data
storage. We describe common themes in challenges that the
sites face when implementing monitoring solutions. These
themes represent opportunities for vendors to enable more
portable and extensible system monitoring, and ultimately
more efficient operation of machines.

A. Use of undocumented and unsupported data paths to
obtain data

Several sites have utilized unpublished and/or unsup-
ported codes and APIs for collecting system data for use in



Figure 5. NCSA: Timeseries visualizations of multiple metrics can provide insights into underperforming applications. Summing and averaging over nodes
enables condensation of high dimensional data enabling at-a-glance understanding. NCSA enables user access to plots, with the ability to download the
image and also the raw data for further investigation. Infrastructure to support data collection, transport, storage, analysis, and visualization is not supplied
by the vendor.

assessing health and/or identifying problems and associated
root causes. This includes data that is either not exposed, or
exposed by methods which may be difficult or inefficient to
use for the intended analyses.

Vendors selling integrated solutions are positioned to
develop instrumentation and APIs for acquiring data from
instrumented components. Unfortunately, vendors often de-
velop proprietary solutions that are meant to provide
telemetry for fundamental system operation but are not
meant to be utilized by operations staff as data sources.
In Cray’s case, they acquire a vast amount of data which
is 1) transported in a proprietary binary format (a small
subset is made available to operations staff in text format
for troubleshooting purposes) or 2) used exclusively internal
to the system for detection of vendor defined problem con-
ditions and to trigger mitigating responses. These two cases
appear in our site experiences only because site personnel,
through personal interaction with Cray engineering staff
and/or reading through source code, became aware of these
sources and how to access them. With respect to case 1,
ALCF personnel utilized source RPMs to understand what
data was flowing from Cray’s Event Router Daemon (ERD)

(which transports all event information), how to access the
raw encoded data, and how to decode the data. In case 2,
SNL personnel were made aware of the libraries and APIs to
enable querying the Gemini and Aries performance counter
data and what functional combinations of which data could
be used to provide insight into network congestion levels.

While these interactions have been fruitful for particular
sites, problems arise when collaborators wish to leverage
the non-Cray developers’ tools at other sites. The libraries
and interfaces are not officially opened to everyone (some
even falling under NDA agreements) and there is no guar-
antee that the APIs won’t change in future system soft-
ware releases. Thus, these kinds of tools will necessarily
remain one-off tools and every site will continue indepen-
dent development of their own monitoring capabilities. If
vendors would provide in depth documentation of such
capabilities and user accessible APIs for reading data
that is already being produced, sites could collaboratively
develop and share tools across sites. This could also enable
abstractions that would facilitate sharing across multi-vendor
platforms.

ALCF’s case also illustrates that vendor transla-



tion/filtration of data may result in less usable forms
of data. By default, Cray separates log events into at least
20 different per-day log files, addressing different sources
and/or types of events (e.g., hardware errors, network
events), and placed into a multi-level directory hierarchy.
Time and date formatting vary between files, some log events
are multi-line, and some files are binary requiring Cray
tools to provide human-readable translations. It is possible to
forward the log stream off the system and thus bypass some
of the formatting and separation. Generally, however, data
translations, formatting, and filtering then require significant
parsing to identify and combine the underlying data. ALCF’s
work enables them to get data closer to the source and to
its native format, enabling more usable and complete data
from the ERD event stream.

B. Data Transport For Storage and Analysis

Whether monitoring data is obtained via benchmarking,
querying through standard and/or supported APIs, or via
some other mechanism, the data still needs to be transported
from the source and put in stable storage for processing.
Currently data transport and storage (Section IV-C) are
handled on a per-data-type basis where the only standard
is use of some version of syslog for transport of log (e.g.,
error and event) messages.

Benchmark execution times, and, optionally, other embed-
ded figures of performance, are handled on a per-site basis.
Typically, these are first stored to the running user’s specified
location and then used for analysis and visualization. In this
case the shared filesystem is the transport and storage is first
performed by writing output files which are then harvested
for pertinent information which is finally put into some kind
of site-specific store (e.g., file, database) for analysis and
comparison against expected results.

For other types of data, sites utilize a variety of trans-
port mechanisms, possibly concurrently, including vendor
proprietary (e.g., Cray’s ERD), custom built (e.g., SNL’s
Lightweight Distributed Metric Service (LDMS) [18]), stan-
dards based (e.g., Redfish [19]), popular (e.g., AMQP [20],
RabbitMQ [21]), etc. Of all the transports listed here, the
only proprietary and platform dependent one is Cray’s ERD.
While this offers hope for the process of tool sharing across
platforms, sharing across sites is made difficult because
different sites have made different choices among the
plethora of available data transport and related storage
mechanisms. These choices reflect a variety of things such
as data type, variety, and fidelity and associated performance
requirements; directly applicable analysis tools; and sup-
ported visualization tools including dashboard displays. As
such, multiple transports may in some cases be necessary
and even desirable. Currently, however Cray provides no
generally accessible transport mechanism and storage
solution, even for data limited in time and size (although
the PMDB has been a move in this direction). As a result,

sites must make a substantial up-front effort in design and
implementation for fundamental monitoring capabilities and
which might not then be a drop-in at other sites.

C. Data storage and formats

While information/data being collected (described in Sec-
tion II) is similar as are the analysis goals, sites have picked a
variety of data storage technologies for storage and analysis.

• MySQL [22] NCSA stores compute-node performance
data in a pre-existing MySQL database containing other
system and workload data. NERSC uses MySQL for
a variety of job, software usage and node-state data.
These decisions are motivated primarily by conve-
nience of querying the variety of data and work well
syntactically, but canonical implementations of SQL-
based databases lack scalability with respect to ingest,
deletion, and query impacts and performance.

• Power Management Database (PMDB) [8] Cray’s
PMDB is a PostgreSQL [23] database with a schema
developed by Cray to support primarily power data
and which also supports the SEDC data. Originally
designed to be located on the System Management
Workstation (SMW), it now can be stored separately
via ERD (Event Router Daemon) forwarding capabili-
ties [24]. Recently-added functionality allows job-log
data to be forwarded to the PMDB, which can be
used for extracting per-job data. As with MySQL, Post-
greSQL suffers from performance limitations. Also, to
support additional data sources PMDB needs schemas
and other supporting capabilities (e.g., analysis and
visualization) to be developed. A recent OS update
(UP06) uses TimescaleDB - also based on PostgreSQL
- to improve performance [25].

• Elasticsearch [26] NERSC and ALCF use the Elastic-
Search ecosystem for storing and analyzing monitor-
ing data. NERSC’s infrastructure includes a message
queuing system (RabbitMQ) and incorporates data from
building management systems and weather stations as
well as its clusters, while ALCF also stores job data and
uses its custom tool to read hardware error (hwerr) data
from the ERD. Both use LogStash to format data from
disparate sources appropriately for ElasticSearch.

• Splunk [16] and Simple Event Correlator (SEC) [15].
Several sites use Splunk for their log message analy-
sis, which consists of developing regular expressions
matching messages of interest and utilizing Splunk’s
visualization interface for examining occurrence data.
These sites format their test suite output to support
indexing with Splunk which can then visualize test
suite results in conjunction with log data. This is not
a storage format but requires storage for the indexing
of the log files in their native format. Splunk’s pricing
model is based on size of the data being indexed, which



Table I
NEEDS AND REQUIREMENTS FOR MONITORING

Needs Requirements
Architecture

• We will always need additional data. We will always
need to use it in unanticipated ways. We will always
need higher fidelity data.

• We will need to direct the data and analysis results
to multiple consumers (e.g, users and administrators,
various analysis capabilities).

• We will need to integrate the data with other non-
platform data.

• Vendors should provide well-documented interfaces for accessing raw data
at maximum fidelity with the lowest possible overhead.

• Platform owners should be able to determine the data access, transport,
storage, and performance tradeoffs of their own choosing, rather than vendors
limiting accesses or amounts. The monitoring system, both hardware and
software, should be provisioned with this in mind, with options for scaling
up. Where access and transport of data might incur impact, that impact should
be well-documented.

• Multiple flexible data paths should be anticipated, with changes in data
direction and data access easily configured and changed.

• All monitoring system capabilities should be production capabilities and
documented, exposed, and supported as such.

• Tools to transport and store the data in native format are highly desirable.
• Extensibility and modularity are fundamental to support evolutionary devel-

opment.

Data Sources

• We will need production-level insight to the compute
platform and all supporting subsystems. This should
reveal state of health, utilization, performance, and
performance-impacting events.

• We will always need more raw information and we will
need information that leverages domain knowledge the
platform supplier has about its own architecture and
about other vendor supplied components.

• Potential data sources include traditional text (e.g., logs), numeric (e.g., coun-
ters) sources, as well as test results and application performance information.

• Vendors should expose all possible data sources for all possible subsystems.
• The meaning of all raw data should be provided. Computations required to

extract meaningful quantities from raw data should be defined.
• Continuing interaction throughout the lifetime of the machine with vendor

engineering staff is needed for understanding the data in the context of the
architecture.

Data Storage and Formats

• We will need to keep all data and to analyze historical
data in conjunction with new data in unanticipated
ways.

• Easy access to historical data and the ability to access historical data in
conjunction with current data is required. As with the storage of application
data, all storage does not have to be equally performant; hierarchical storage
models with the ability to locate and reload data as needed are desirable.

• Analysis results should be able to be stored with raw data.

Analysis and Visualization

• We don’t expect the platform supplier to provide all
analytics, nor to know all the analytics that we might
need now and in the future. We will need to develop
investigatory analyses and visualizations.

• We will want to support both immediate feedback and
post-processing analyses.

• We will want to assess application performance in
conjunction with system performance and utilization
measures.

• Analysis capabilities should be supported at variety of locations within the
monitoring infrastructure (e.g., at data sources, as streaming analysis, at the
store, at points of exposure to consumers).

• The data store should be designed to support arbitrary extractions and
computations. Stores with interfaces that support popular computational
packages are desirable.

• Concurrent conditions on disparate components should be able to be identi-
fied.

• High dimensional and long term data need to be handled in analyses and
visualizations.

• Visualization interfaces and tools should facilitate easy development of live
data dashboards.

Response

• We will need to take action on the results of the
analysis. This includes feedback to both humans and
software.

• Reporting and alerting capabilities should be easily configurable. These
should be able to be be triggered based on arbitrary locations in the data
and analysis pathways.

• Data and analysis results should be able to be exposed to applications and
system software.

can be cost-prohibitive during event storms such as
when problem conditions arise on the machine.
Cray systems more generally use SEC, which can
trigger events, such as alerts, upon matching conditions.
This is also not a storage format but a processing tool.

• InfluxDB [27], ALCF reads SEDC data from the ERD
and inserts it to InfluxDB in real time. ALCF retains
the data indefinitely and uses Grafana for visualization.
InfluxDB was chosen for its superior data compression
and query performance for high-volume time series data



compared to Cray’s PMDB, though the recent move of
PMDB to TimescaleDB has prompted a re-evaluation
of this decision.

Sites are interested in long-term data analysis, which may
require revisiting historical data in conjunction with current
data and may involve applying new analyses to historical
data. As a result, storage methodologies which enable keep-
ing near-term data in performant storage, and complete long
term data in perhaps less-performant storage which can be
reloaded into active data are desired. Solutions must address
both the mechanics of the archiving and reloading and
tracking the locations and contents of archived data.

Estimates of data sizes and ingestion rates have histor-
ically been generally lacking, based on log size and only
vendor-obtained numeric data. As sites increase both their
data collection, including external data (e.g., facilities data)
to be integrated, and analysis results to be stored, these size
estimates and formats will need to be revised.

Storage must also support efficient analysis. Many his-
torical monitoring data storage solutions in the HPC space
have not been designed to support the amount of data,
its fidelity, the possible complexities of queries, and the
modern analysis tools (e.g., [28], machine learning) needed
for current and envisioned uses of the data. Understanding
of the intended queries, analysis, and analysis tools is
essential for appropriate design.

V. CONCLUSIONS

Based on our experiences and insights presented in Sec-
tion III and Section IV, we have aggregated and formalized
the key needs and recommendations in Table I. These
are organized by components required for comprehensive
production monitoring solutions.

In addition, our shared experiences across ten large-scale
HPC sites have generated the following high-level insights
into current critical gaps in vendor solutions with respect
to monitoring, storage, analysis, and visualization tools and
tool development:

• Component (hardware/software) performance metrics
are not well-documented, not published, or both. This
includes architecture-dependent processor and network
performance counters; and includes both access meth-
ods and how they can be used/combined to provide
insight into resource state and utilization.

• Interfaces for making large-scale data generally avail-
able are hard and enabling data exploration is even
harder.

• Currently available storage (database) technologies do
not lend themselves to the wide variety of use cases for
aggregation and analysis of information (combination
of event, text, numeric time series) with respect to
capacity, performance, and size.

• Vendor tools don’t generally integrate well with user
developed tools across platforms.

• Vendor engineers in many cases don’t have answers
for system behaviors and performance-impacting issues
and large-scale collaborative experiments may be the
only path to discovery. Such experiments are costly and
must be engineered thoughtfully before execution.

• In many cases site-specific researchers and operations
staff work with vendor engineers via back channel rela-
tionships to acquire undocumented information which
they then use to build one-off tools. These typically
cannot be shared for a variety of reasons including
bilateral NDAs and site reluctance to maintain and/or
tools based on fragile or unsupported vendor code with
no guarantee of being carried forward.

• Site-developed capabilities may not even be fully uti-
lized at the sites themselves, since Cray on-site per-
sonnel may not be able to utilize individual site-
developed diagnostics if they don’t enable a general,
global diagnostic procedure.

• Tools are often developed by/for administrators with
root access and ubiquitous “need to know”. Adding
infrastructure to control information access per user
is often impractical and hence information that might
be of tremendous benefit in answering users’ burning
question(s) cannot be shared with them.

Successful monitoring will increase the demand for mon-
itoring. Potential consumers of data will increase in number
and type (e.g., system administrators, users, application
developers, site platform procurers, intelligent system soft-
ware, etc.) as data becomes more useful. Thus, end-to-end
monitoring development will be a continuous, evolutionary
process, and extensibility and modularily of all monitoring
components’ designs will be essential.
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