
Exploring New Monitoring and Analysis Capabilities on Cray’s Software Preview
System

Jim Brandt§, Connor Brown‡, Scott Donoho∗, Ann Gentile§, Joe Greenseid∗,
William Kramer†, Patti Langer∗, Aamir Rashid∗, Kevan Rehm∗, and Michael Showerman†

∗Cray Inc.
Email: (sdonoho|joeg|planger|arashid|krehm)@cray.com

†National Center for Supercomputing Applications (NCSA), Urbana, IL USA 61801
Email: (wtkramer|mshow)@ncsa.illinois.edu

‡SAIC, Albuquerque, NM USA
Email: conbrow@sandia.gov

§Sandia National Laboratories (SNL), Albuquerque, NM USA 87123
Email: (brandt|gentile)@sandia.gov

Abstract—Cray, NCSA, and Sandia staff and engineers are
collaborating to jointly investigate and provide new insights on
the monitoring aspects of Cray’s recently released “Software
Preview System.” In the preview system, Cray has implemented
the LDMS framework within the monitoring infrastructure.
In this work, we extend that implementation and leverage
the Cray infrastructure to include new monitoring capabilities
suitable for addtional node-level and application monitoring.
We use the Cray-provided telemetry bus for transport and
consumption of the new metric data. We explore scale and
performance considerations. We provide details on the issues
impacting or facilitating implementation of these functionalities
within Cray’s new, container-based services system. In our
implementation, we adhere to Cray’s design philosophy which
is intended to ensure the reliability and availability of the Cray-
collected metrics and system services.

I. INTRODUCTION

Performance of systems and applications is highly depen-
dent on effective use of system resources. Contention for
shared resources, such as the interconnect; running on faulty
components; or running in imbalanced decompositions can
significantly degrade performance. However, continuous de-
tailed insight into resource state and utilization, where
such understanding often relies on higher-level analysis and
integration of raw data, is not a delivered capability on large-
scale systems. Often system operators must develop one-off,
site-specific capabilities to deliver individual aspects of what
is needed for a complete system solution.

To support this need for deriving actionable information
at run time at scale from raw data, in the next evolution
of Cray’s system software (as deployed in Cray’s Software
Preview System), Cray has advanced the architecture and
capabilities of its monitoring software and infrastructure.

At the same time, the platform’s architecture, system
services, and potential user environment have evolved as
well. In previous generations of Cray’s supercomputing
systems, system services run on a bare-metal-installed OS

on specific physical servers which may be configured as
HA failover pairs. In a substantial departure from previous
platform architectures, it is expected that Cray’s next gener-
ation platform, Shasta, will have system services running in
containers that may or may not be able to migrate between
servers as part of load balancing efforts. Other services, such
as compute nodes, may have bare-metal OS installations and
support user-launched jobs that run in the host OS or user-
launched containers.

These changes will require a re-evaluation of how sites
adapt local customization and supplementation of Cray-
provided services. New capabilities may have to be devel-
oped to enable desired complex scenarios such as monitoring
system services or resource demands of applications running
inside containers, as well as feedback of analysis results to
both user and system software. Such development requires
understanding of how data from within containers can be
extracted and integrated with other monitoring data, how
custom data can be injected into the telemetry bus, how
available networks (e.g., management, High Speed Net-
works (HSN)) can be used for low-latency data transport,
and how performance optimizing responses (e.g., workload-
resource mapping via container migration) can be invoked.
Further, sites must understand how collectors and aggrega-
tors provided by Cray as part of its delivered monitoring
services function, and what adaptations are necessary to
create site/user/job- specific collectors and aggregators in
this mixed container/bare-metal-OS environment.

Cray developed its Software Preview System to enable
interested sites to begin exploring the implications of new
features and mechanisms currently under consideration for
inclusion in the Shasta platform. Included in this is a mon-
itoring service which contains Cray-specific components,
Lightweight Distributed Metric Service (LDMS [1]) for in-
band data collection, and a telemetry bus for distribution
of telemetry data to system users and services. Use of the

Preview System is expected to generate feedback about what
works, what doesn’t, and suggestions for desirable changes
based on experience with evaluation/pre-release software.
Identified issues may addressed in the production Shasta
release.

Cray, NCSA, and Sandia staff and engineers are col-
laborating to investigate, and provide new insights on, the
monitoring-related aspects and potentials for this system.
This includes support in the design for site-specific cus-
tomizations and data access, which have been high priority
requests by sites in the past [2]. In this paper, we present
our current progress in this investigation, using Sandia’s
Cray Software Preview System, Perkins, running Software
Version 0.4.0. We first present a high level architecture of
the Cray Preview System’s Monitoring system components
and how we are extending and leveraging them to support
additional user metrics in Section II. We present details
of the implementation enabling additional monitoring and
making the data available to the telemetry bus in Section III.
We present options for getting metrics off of the telemetry
bus and making them available for viewing and analysis
in Section IV. Within those sections we provide informative
detail of our experiences using the current Software Preview
System. We present implementation and results of a scaling
study in Section V. We present our next steps and future
work in our collaboration in Section VI. We conclude in
Section VII.

II. SYSTEM OVERVIEW

In this section we address the Cray-provided monitoring
capabilities in the Software Preview System and how we are
extending them to support addition of monitoring capabili-
ties to the system, while leveraging the current architecture.

A. Software Preview System Architecture

The preview system components are described in [3] as
“The system is a cluster consisting of a single 19 inch
rack with eight nodes. Nodes are configured as manage-
ment nodes, service nodes, or compute nodes (all server
hardware is identical). The system includes a high-speed
interconnect network (HSN) based on Mellanox ConnectX-
5 NIC, an integrated storage system with a pre-configured
Lustre file system, two management networks, and two
power distribution units (PDUs). The HSN is shared by
the management nodes, service nodes, compute nodes, and
the storage system.” A graphic of the system is shown in
Figure 1 (from [4]).

B. Software Preview System Monitoring Architecture

A diagram of Cray-provided monitoring for the system is
shown as Figure 2. The architecture supports data collection
and transport from a variety of numeric and text based
sources, both out-of-band and in-band. Cray has not yet

Figure 1. Diagram of the Cray Preview System (from [4]).

announced the full set of data which they intend to collect
and make available.

In this work, we focus on the LDMS-initiated monitoring
and subsequent data flow. (Relevant high-level information
on LDMS can be found in Section II-C). LDMS collectors
run directly on the bare metal of the system nodes. The
LDMS aggregator is run in a container that for our system
has been configured to reside on SMS04 in the sma names-
pace. In the general case the SMS nodes collectively host all
of the containers related to monitoring and metrics collection
for the system. The aggregator runs a Cray-implemented
LDMS store plugin which writes its metrics to a kafka [5]
based telemetry bus. The metrics that Cray is collecting via
LDMS are read from the telemetry bus, and stored in the
Postgres database, where they drive a Grafana [6] based
display. Metrics or Groups of metrics are identified by the
topic to which they are published on the telemetry bus. All
Cray LDMS-collected metrics are currently published to the
topic “metrics”. The sampler data in our current system is
transported via high speed 100Gb/s ethernet connections that
connect the SMS04 node running the aggregator pod to the
compute nodes running the samplers.

C. LDMS

Details of the Lightweight Distributed Metric Service
(LDMS) [1] are beyond the scope of this work. Information
relevant to this paper is described in this subsection.

LDMS collects and transports data from distributed

Figure 2. Diagram of monitoring in the Cray Preview System. Components elaborated on in this work are the LDMS sampler, aggregator, and store to
kafka; the kafka bus; the telemetry API; and the encompassing container-based environment.

sources at resolutions necessary for detecting features and
events of interest and to respond on meaningful timescales.
Data is collected, typically at intervals of 1 second of less, at
the same time at distributed data sources in the system (e.g.,
individual nodes), within the errors of the system clocks and
offsets due to competing system processes (in practice this
is on order of a few ms).

LDMS daemons run as samplers, aggregators, or stores,
with each daemon consisting of the same base, but with
functionality discriminated by the daemon configuration
and plugins. LDMS supports high fan-in of data-sets to
aggregators (i.e., tens of thousands to one), using RDMA
or a socket based transport over a system’s High Speed
Network (HSN). Multiple instances of LDMS can be run
concurrently.

Data is collected into metricsets typically consisting
of multiple metrics from the same data source (e.g.,
/proc/meminfo) that may be efficient to collect at
the same time or of multiple metrics from different data
sources for the same component (e.g., selections from
/proc/meminfo and /proc/loadavg) that it is conve-
nient to keep together with the same timestamp. The memory
layout is prioritized for metricsets and metricsets are pulled
together in a single RDMA fetch.

In current site installations on XC and XE systems, LDMS
is used for in-band collection of node-exposed data such as
memory and CPU utilization counters, PAPI and/or MSR [7]
hardware counters, and Cray-exposed Aries [8], [9] and

Gemini [10], [1] performance counters.
The version of LDMS that is deployed in Preview

software is LDMS v3 with Cray-developed versions of
some samplers, supporting changes in the core, and a
store_kafka plugin. To support extending the monitor-
ing capabilities, we ported Cray’s store_kafka to LDMS
v4 [11] in order to run the most recent samplers and to
exercise the collection rate change feature. (This plugin is
not yet part of the LDMS v4 release.) Version differences
and details are orthogonal to this work; nevertheless, we
were pleased that it was straightforward to port the store
and support multiple versions. The LDMS developers and
Cray will determine a consolidated development path, going
forward.

D. Extending the Architecture for User-Driven Metrics and
Storage

The goal of this work is to explore and extend the vendor-
provided monitoring infrastructure to enable additional, user
driven, monitoring of the Software Preview system compo-
nents and storage of both vendor and user configured met-
rics. In this work, we then refer to this additional monitoring
and storage as user-driven, referring to the operations staff
as opposed to the users running applications on the system.

Cray’s intended architecture for the additional metrics
is for the user to run separate samplers, whose data is
aggregated by one or more LDMS aggregators running
in separate user-launched, containers. The Cray-provided

aggregator would be untouched. Metrics from these aggrega-
tors will be transported over the same telemetry bus as the
Cray-collected metrics, but can be differentiated by topic
(currently one per aggregator). In this work, we publish
each separate set type to a separate topic. This is shown
in Figure 3.

Metrics can be read off the telemetry bus via the teleme-
try API, as is Cray’s intent, or by reading from the bus
directly. Ideally, we would read the metrics off the metric
bus and redirect them off the system to a large-data store,
for analysis, or to other downstream consumers. Since the
Perkins system does not include off-system storage, we
instead investigated two different models that each capture
only part of the ideal scenario. In one option, on nid00004,
we read off the telemetry bus via the telemetry API and
wrote the output to CSV files. In another, we investigated
insertion into a database; this case required more storage
space, which we had on SMS04, and therefore, we chose to
read directly off the bus and test insertion there. Neither
case is ideal, but both enabled us to study options and
performance for consuming off the bus.

We had constraints on adding external systems to the pre-
view system, so we were forced to use some of the compute
nodes for more administrative purposes. In our current setup,
we have added additional packages and RPM’s to nid000004
in order to build and test LDMS. We further use nid00004
for using the cray-provided pre-release client.py script
to pull metric data off of the telemetry bus via with the
telemetry API and to locally store the metrics produced
by our additional monitoring. This represents a user-driven
model where a user would like to sample additional data
and store it in their own database for processing without
interfering with the existing cray monitoring infrastructure.

III. IMPLEMENTATION OF USER-DRIVEN METRIC
COLLECTION

Additional data collection in the Software Preview ar-
chitecture is not as simple as merely adding additional
collectors to the currently running LDMS aggregator, due
to design considerations to ensure reliability and availability
of the Cray-provided data and services. We describe the
requirements and resulting implementation in this section.

A. Design Philosophy

Figure 3 depicts the stock Cray data paths (blue) and
our user data paths (green). We provide a parallel data
path for user data from data collection through aggregation,
publishing to the system telemetry bus, and consuming from
the telemetry bus. Shared monitoring infrastructure is limited
to telemetry bus to avoid possible configuration corruption or
data gathering perturbation of critical system services or data
that feeds them. The reason for sharing the telemetry bus is
that Cray is providing this infrastructure in a scalable way
to provide a single data sync with a common output format

for both Cray and system administrator supported system
services as well as system user data consumption. Use of
the system telemetry bus requires the bus to host topics
other than what Cray is using, however, the configuration
is straightforward and lives in a single file.

B. Building LDMS

While the packaged LDMS (LDMS v3) is available for
use by anyone on the system, it is not the latest version
available. We decided to build and use the latest version
(LDMS v4) because it has a number of extended features
with two in particular that we wanted to exercise as part of
this deployment: the main one is the ability to dynamically
modify a LDMS sampler’s sampling frequency and have that
change trickle down through the aggregators, the other is the
ability to create test sets with arbitrary set configurations
with respect to types and ordering of data. The latter we
utilize for scalability testing of the telemetry bus (detail
in Section V). Some issues in the build we discuss in
Section III-F.

In order to write to the telemetry bus from our LDMS
v4 aggregators we did need to port the Cray-provided
store_kafka to LDMS v4, as mentioned in Section II-C.
The port was straightforward though we did omit some
Cray specific pieces that support some Cray specific LDMS
sampler plugins. We expect to add these back in so that
both Cray and user data collection can utilize the LDMS v4
infrastructure.

We were able to copy the full build directly into the
our container image which we had copied from the original
Cray-provided container and kubernetes [12] configuration
to assist in creating our own kubernetes pod. We titled this
new pod ”sma-ldms-sandia-v4”. Changes needed to be made
to the start.sh script located in the root directory of
the new pod in order to stop it from exiting when running
multiple LDMS daemons. Cray’s initial intended use of their
pod was to have a single LDMS aggregator daemon running
as they are only writing to a single telemetry bus topic. They
wrote a cron script to enforce this which kills the pod if it
detects more than one ldmsd process running.

In alignment with the design philosophy, we publish the
additional metrics to different topics than the Cray collected
metrics, which are read off by topic and inserted into the
Postgres database. Further, to facilitate processing when
reading off the telemetry bus, we publish each metricset
type to a different topic. While a single LDMS aggregator
daemon supports simultaneous aggregation of an arbitrary
number of metric set types, it currently only supports a single
instance of any particular store plugin. Also a single instance
of the store_kafka plugin only supports publishing to
a single topic. Thus to satisfy multi-topic data publishing
we must run multiple LDMS aggregator daemons (one per
topic). We also had to modify Cray’s multi-ldmsd detector
cron script to enable this mode of operation.

Figure 3. Extended configuration to support user monitoring within the Cray-provided monitoring architecture. Cray-provided data flow is in blue;
extensions are in green. Multiple aggregators is a Cray-driven design choice to ensure reliability and availability of the Cray-provided metrics. Metric
extraction from the telemetry bus was done both by direct reading from the bus and by using the telemetry API for comparison purposes. Locations
of reading and storing from the bus are investigatory within the Preview System are are not intended to be how they would be used in a production
configuration.

In our custom aggregator pod we currently run one LDMS
aggregator daemon per sampler plugin type deployed on the
compute node LDMS sampler daemons (5 total). We have
created a separate configuration file per LDMS aggregator
daemon. Each daemon writes to a kafka topic whose name
matches the sampler plugin associated with the metricset
being collected (e.g., the meminfo plugin’s metricset is
published to a kafka topic called “meminfo”).

C. Compute node-side Deployment

On the compute nodes, as with the Cray LDMS sampler
daemons, our user LDMS sampler daemons are run on the
host OS. Cray utilizes a genders [13] based infrastructure to
define the configuration parameters for their daemons. This
can potentially simplify, for users, the process of separately
configuring and starting multiple samplers and aggregators,
particularly when only using the Cray-provided build (as
opposed to the additional v4 build we used in this work).

We instead took the approach of writing a configuration
file, a launch script, and a stop script. The same launch
script, configuration file, and stop script are utilized for
each node with the differentiation being population of some
environment variables at run time to configure the host and
component identities of the metricsets. A script to call the
compute node start and stop scripts using the pdsh utility
resides on the SMS04 node. In addition we wrote two scripts
and associated configuration files to dynamically modify the
sampling frequency of one of the sampler plugins. These
scripts are also run via scripts residing on the SMS04 node

using pdsh and simultaneously modify the same plugin in
the same way on all compute nodes. In production deploy-
ments, these are configured and started more standardly as
system services, of course.

The sampler plugins that we utilized for this
work were vmstat, meminfo, procstatutil,
procinterrupts, and procnetdev. These plugins
sample all data from /proc/vmstat /proc/meminfo,
/proc/stat, /proc/interrupts, and select interface
information from /proc/net/dev respectively.

D. Application and Container Monitoring

Monitoring an application running on bare metal is no
different that standardly doing so with LDMS. Typical
metrics include node level data and application performance
counters. For demonstration purposes we ran a toy applica-
tion we call memeater which continuously allocates memory
until it is killed by the OOM killer. This enabled us to verify
the collection and the data storage.

Due to time constraints, we were limited in our abil-
ity to comprehensively investigate monitoring applications
launched in containers. Our eventual plan is to investigate
what information can be obtained outside of the container
and what information needs to be obtained inside the con-
tainer, and how to pass the latter to an aggregator. This
includes assessing the ability to attribute resource utilization
to processes within the container.

As an initial foray, however, we included monitoring of
the container running the LDMS aggregator. We further

limited the monitoring to collection of resource utilization
data from files in /proc by pid. Explicitly, we modified
the LDMS dstat sampler to take an optional pid (as
opposed to dstat reading the ldms pid’s data) in order to
collect from /proc/pid/iostat, /proc/pid/stat,
/proc/pid/statm. In order to determine the pid of the
container, we needed to manually perform the commands
shown in Figure 4.

We then started a sampler on the node hosting the aggre-
gator container (SMS04) with the modified dstat sampler
configured with the extracted pid.

As the locations of the container metrics are dynamic,
there will be difficulties in creating a sampler that can fol-
low kubernetes pods upon creation and destruction. Further
complicating the matter is the idea that docker [14] images
will be able to reside on any of the kubernetes workers in the
cluster. This makes finding resource utilization for individual
containers a challenge with our current sampler setup.

E. SMS node-side Deployment

By creating a new kubernetes pod for our own custom
configured aggregators, we were able to leave the default
sma-ldms kubernetes pod as it was configured from Cray.
In addition, we were able to create our own kafka topics.
While we are sharing the same telemetry bus, the creation
of additional topics allows for us to keep separation between
the user metrics and the native Cray metrics.

F. Difficulties Encountered

LDMS v4 was built successfully on nid000004 once all
dependencies had been resolved by adding several packages
to the build environment. The only dependency that pre-
sented a problem was openssl-devel as we were unable to
locate a package compatible with the pre-packaged version.
Our solution was to downgrade the packaged openssl in
order to install a compatible openssl-devel RPM. This was
a fairly easy fix, but it would be beneficial in the future to
be provided with the full .iso that was used to install the
image to avoid potential versioning issues.

The build and implementation of LDMS v4 within a
container provided some difficulties. Most of the difficulties
that we ran into involved the customization of our LDMS
v4 docker image. We were able to take the existing default
Cray provided sma-ldms container image and adapt it for
our own application which saved us a significant amount
of time that would have spend configuring the image other-
wise. The overall workflow for LDMS implementation and
configuration was noticeably more complex than we have
experienced on previous systems. Cloning docker images,
editing them, saving them, then loading them into the docker
repository was a process that needed to happen frequently
during our deployment. We felt that it was necessary to
restart our pod frequently while making changes in order
to verify that our changes did not affect the overall integrity

of the default Cray monitoring platform. While restarting the
pods is a relatively easy process, it does change the name
of the kubernetes pods every restart. While it is simple to
find the new name of the kubernetes pod, it does add to the
complexity of use. We found ourselves typing the same few
kubernetes commands frequently.

The currently provided start.sh script which limits
the number of running ldms-like-named processes will have
to be revised not only for supporting multiple concurrent
instantiations, but also because it conflicts with supporting
concurrent running of LDMS query tools, such as ldms_ls
which is used for command line querying of LDMS daemons
to obtain current metricset information.

While the current pid-based container monitoring worked
sufficiently for the current investigation, supporting moni-
toring for dynamically changing containers will require a
different process.

IV. TELEMETRY INFORMATION AND REMOTE ACCESS

Metrics are made available via the telemetry bus. Cray
provides a Telemetry API to facilitate access to data on the
bus, however, metrics can be read directly from the kafka
bus as well. We explore both options in this section.

A. Telemetry API Definition and Operation

The Telemetry API is a read-only interface that allows
messages from the Shasta message bus to be consumed
outside of the Shasta Monitoring Framework. The teleme-
try API resides in a kubernetes pod inside of the SMA
namespace and acts as bridge between the kafka message
bus and clients outside of its namespace. This is illustrated
in Figure 5.

User clients outside of the framework subscribe to a
particular kafka topic from the API using an HTML request.
Each HTML request results in a new kafka client that
consumes messages from the user specified kafka topic.
The API bundles, compresses and pushes messages received
from the kafka client to the user client. Messages are pushed
from the API to user clients using HTML5’s Server Side
Events (SSE) feature. The use of SSE enables the client
to use its original HTML request connection to receive
messages. No polling is required, the client simply blocks
reading from its original HTML connection.

The user clients can scale through the use of kafka
consumer groups. A number of user clients can be run under
the same consumer group name enabling each of the clients
to load balance the message stream from the API. Consumer
groups also have the additional benefit of offset message
management. The API keeps track which messages each
consumer group has consumed. Therefore, a client can be
restarted and resume where it left off automatically if it uses
the same consumer group name and is restarted within the
kafka retention policy time.

sms04-nmn:˜ # docker container list | grep ldms

07ed9ebdd998 d8022eb6ca4e /start.sh 19 hours
ago Up 19 hours k8s_sma-ldms-aggr_sma-ldms-aggr-7

cd68f6fb-mh5n7_sma_2420ae5f-60a2-11e9-8bac-0060dd470896_0

3fcfb162e9fc k8s.gcr.io/pause-amd64:3.1 /pause 19 hours
ago Up 19 hours k8s_POD_sma-ldms-aggr-7cd68f6fb-

mh5n7_sma_2420ae5f-60a2-11e9-8bac-0060dd470896_0

sms04-nmn:˜ # docker inspect 07ed9ebdd998 | grep Pid
Pid: 186729,

Figure 4. Example commands to obtain the pid of the ldms aggregator container

Figure 5. Telemetry API Message Flow. Use of the Telemetry API
establishes the kafka clients which get data from the telemetry bus and
make it available to the user clients.

Cray provided a pre-release version of the telemetry API
and client to use on our Preview version 0.4.0 system. The
telemetry API was recently released in Preview version 0.5.0
and some info may be found in [15].

B. Data formats on the telemetry bus

Determination of the format of the metrics on the teleme-
try bus can be generally arbitrary. Cray’s store_kafka
plugin pre-defines a few possible json-based formats which
can be used. Configuration of the store determines which
form is used.

One particular format has been specified by Cray for
metrics which they will read off the bus and store into the
Postgres database. This is called cray fmt and it is shown in
Figure 6. This consists of a json string per individual metric
and contains the base information of timestamp, cname of
the relevant component, metric identifier (e.g., MemTotal),
and value, with other information.

Another format was included for diagnostic purposes,
which writes all the metrics in a metricset together into
a pretty-print, nearly-json structure, minus some required
quotation marks, and with some integrated newlines. We
revised these features for transport and parsing and will call
it metricset fmt (the original version is actually called json
format, and is the default option in store_kafka) and

it is shown in Figure 7. Note that nested lists have been
reduced in size for clarity.

The advantage of the metricset fmt format is there is
much less overhead per metric. The cray fmt has ∼500
bytes of overhead per metric:value. Note that in the native
LDMS transport, even less data is transferred – for example,
metric names are metadata in the native structure and only
transported when changed.

C. Reading directly off the telemetry bus

One can also make calls directly to the
kafka bus for reading off the data, for
example: kafka-console-consumer.sh
--bootstrap-server kafka:9092 --topic
metrics. However this methodology does not provide
the eventual load-balancing capabilities that use of the
telemetry API and associated clients would.

We intend to use this method to compare the performance
for reading directly from the bus vs using the telemetry API.
We implemented a proof of concept analysis and visualiza-
tion pipeline from an existing production environment but
adapted it to use Cray’s kafka bus and container management
system. The final product is a web-based interface to view
the compute node monitored metrics. The display provides
a timeseries charts with Google Charts, where the data is
either a metric for a single node or a reduction operation
(sum,min,max,etc) across a group of nodes. The cur-
rent implementation groups by all nodes or by a single node
due to the lack of availability of job data. The data pipeline
and resulting visualization are shown in Figure 8.

We built two Kubernetes pods and a standalone docker
image.The general approach taken was to attempt to utilize
unmodified docker images as much as possible and to
mount any directories with customized files or configu-
rations. This enables us to preform upgrades on services
piecewise without the need to maintain our own customized
images. The first Kubernetes pod is a simple python image
with kafka support. This runs a python application that
reads the kafka topics for the user metrics in metricset fmt
and performs an insert per data set into a Cassandra data

{metrics: {messages: [{metric: {timestamp: 1556290290104, name: cray_storage.cray_meminfo.
MemTotal:, value: 196442928, dimensions: {product: shasta, job_id: 0, service: ldms,
hostname: nid000003, component: cray_meminfo, system: compute, cname: c0-0c0s0n3 }}, meta
: {region: RegionOne, tenantId: f1aa39eb19d74f5c96c64e99838de3f7}, creation_time:
3386706919782612992}]}}

Figure 6. Format for Cray-specified metrics on the message bus (a.k.a cray fmt)

{ metrics: { messages: [{ instance_name : nid000001/procstat, schema_name : procstat,
timestamp : 1556314203.012071, metricset : { component_id : 1, job_id : 0, app_id : 0,
cores_up : 36, cpu_enabled : 1, user : 33627332, nice : 34593, sys : 2377911, idle :
23065406125, iowait : 3637430, irq : 0, softirq : 59986, steal : 0, guest : 0, guest_nice
: 0, hwintr_count : 1324653743, context_switches : 1192575344, processes : 2918644,

procs_running : 1, procs_blocked : 0, softirq_count : 1108229508, per_core_cpu_enabled :
[1,1,1,...,1,1], per_core_user : [964457,989215,960860,...,884212,883872], per_core_nice
: [153,2590,2195,...,0,0], per_core_sys : [135318,175062,98275,...,9593,9650],
per_core_idle : [640452892,640464741,640657868,...,640836229,640849001], per_core_iowait
: [112678,164833,92849,...,117294,104172], per_core_irq : [0,0,0,...,0,0],
per_core_softirqd : [2409,2242,2895,...,690,687], per_core_steal : [0,0,0,...,0,0],
per_core_guest : [0,0,0,...,0,0], per_core_guest_nice : [0,0,0,...,0,0] }}]}}

Figure 7. Format for user-specified metricsets on the message bus (a.k.a metricset fmt)

Figure 8. Graphical display using Google Charts (left). Webserver driven by the monitoring data inserted into a Cassandra [16] database. Components
involved in this datapath (right); these are extracted from the full diagram of Figure 2

store. The second pod is a standard Cassandra docker
image with the data directory mounted as a local device
on SMS04. This enables persistence of the database across
restarts. Finally, a docker image was generated to provide
an Apache2 web server with PHP support and the DataStax
PHP Driver for Apache Cassandra. That docker image was
run on SMS04 to enable easy exporting of the web server
port to external systems. The Web server contains php
pages that process the URL and form Cassandra queries
to acquire the metric data. Those results are added to a

google.visualization.DataTable and displayed
with google.visualization.LineChart.

D. Reading off the telemetry bus using the telemetry API

1) Telemetry API: The telemetry API resides on a kuber-
netes pod in the sma namespace on SMS04. We were given
the docker image and kubernetes configuration from Cray
ahead of release in order to further test the possible user
functionality of the telemetry API. This telemetry API pod
opens up a port on SMS04 that allows for external hosts

with access to SMS04 to be able to access the API, and
therefore pull data directly from the topic of your choosing
on the kafka bus. In this case, the LDMS metrics data can
then be stored in whatever format works best for the user.

2) Reading off the bus using the telemetry API: Cray
provided us an example python script (client.py) that
uses the telemetry API and assumes the cray fmt. We
enhanced it to parse the metricset fmt to write out metricsets
as key,value pairs in CSV format. Generally speaking,
this reads metrics off the bus, performs a json.loads()
of the data to parse it, and enable whatever subsequent use of
the data is desired. Highlights of this are shown in Figure 9.
Since each metricset is a different topic, it is straightforward
to write each metricset to a different file. One could just as
well have inserted the data directly into a database (as in
the case where we read off the bus directly), or forward the
data on elsewhere (e.g., to a named pipe).

E. Difficulties Encountered

In general, the challenges in the implementation came
from a lack of familiarity of the containerized environment
and new APIs used. Reading off the message bus via the
Cray-provided client.py script that used telemetry API
and adapting it to store to CSV was fairly straightforward.
Similarly reading directly from the kafka bus and insert-
ing into a database was also straightforward. While the
installation of the database in the infrastructure presented
some challenges, this was not intended to be an expected
implementation.

V. SCALE TESTING OF LDMS AND TELEMETRY BUS

In this section we present details of our scale testing of the
data collection, transport, and storage infrastructure provided
with the Software Preview system. The LDMS component
has been running on large scale production Cray systems for
years and has been shown to scale to tens of thousands of
nodes with multiple data sets, each containing hundreds of
metrics, per node. The Software Preview system is the first to
take the approach of interposing a data broker (kafka in this
case) between the aggregation points and the data store. Thus
we want to evaluate scalability of the system as a whole with
the addition of this new infrastructure. This section describes
our progress in scale testing the configuration with respect
to LDMS sampler daemons running on compute nodes, the
LDMS aggregator daemon responsible for aggregating data
from all scale testing sampler daemons, the telemetry bus,
and the data store for data being pulled off of the telemetry
bus. Note that the LDMS aggregator daemon, telemetry bus,
and data store are all hosted on our SMS04 node.

Since the system Preview system only ships with four
compute nodes, use of it for scale testing required emulating
a much larger scale system by running a large number of
LDMS sampler daemons per node, aggregating from all
of those daemons, and pushing the high volume aggregate

to the telemetry bus. This section describes how we were
able to use this methodology to emulate 4,000 nodes each
producing nine metricsets, with each set containing 650
metrics.

1) Compute Node Configuration: When running many
LDMS sampler daemons on a compute node one of the
problems encountered is the inability to find enough data
sources with a large enough number of metrics to stress the
monitoring system while not over taxing the compute node
resources in collecting them. Note that one can only use a
single instance of any particular sampler plugin on a single
LDMS daemon and many of the plugins produce a relatively
small number of metrics. The ones with a large number
of metrics can incur significant node resource overhead in
reading the data sources over many daemons. Our solution
to this is the LDMS “test” sampler. The test sampler enables
the user to define sets containing any number of scalar and
vector metrics. An example configuration along with a subset
of resulting metrics is shown in Figure 10.

On the compute nodes we created 1,000 distinct configu-
rations for running 1,000 LDMS sampler daemons per node
differentiated by listening port. The port range used was
duplicated on each node and ran from 20001 to 21000.
All configurations utilized the socket based transport. The
metricsets for each daemon were the same: “set1” through
“set9”. Each set consisted of 100 integers, with labels of
“metric1” through “metric100”, and 10 integer vectors of
size 10 to 100 in increments of 10 with labels of “array1”
through “array10”. All values are incremented by 1 on each
successive sample interval. A script to start and stop all
daemons is launched simultaneously on all nodes using
pdsh from sms04. We ran these daemons for 10 minutes to
evaluate the effects on the telemetry bus.

2) Aggregator and Telemetry Bus Configuration and Re-
sults: With respect to aggregating the test sets we utilize a
single LDMS aggregator located in our aggregator pod on
sms04. The aggregator is configured to collect from all 4,000
LDMS samplers every second and is configured to write
to the kafka store using the topic “test sets”. We validated
that the sets can be aggregated and stored directly to CSV
files on the overlayfs file system. We first launched the
aggregator and then the samplers running on the compute
nodes. Running our revised telemetry client.py script
we are able to pull the test sets data off the kafka bus and
write it in CSV format to another directory in the overlayfs
file system. As can be seen in Figure 7, user metricsets
are written to both the telemetry bus and storage in CSV
format where each datum includes a colon separated label
and value.

The data volume across the test sets is ∼7 GB/min to the
telemetry bus and to CSV store. The rough calculation for
this, over the 10 minute interval uses ∼ 11 bytes per scalar
and ∼4 bytes per array value. This translates to 1100 scalar
bytes + 2200 array bytes or 3300 bytes per set being written

Figure 9. Components of the script which uses the Telemetry API to read metrics off the bus and write them out. Marked sections (counter-clockwise
from top left) include: a) high level code which uses the API to set up a kafka client to read events matching a particular topic off the bus b) loop over
events and hand them off to the local unpack data for parsing, and c) format-specific parsing of the json data. The user would principally have to change
only (c).

Figure 10. Selection of configuration of test sampler which supports arbitrary set specifications and sizes to support scale testing. Specification of scalar
and array components highlighted.

every second (200KB/min). Note that the data values start
out small (all values are initially 0 and increment by one
each iteration) and are written as strings to the telemetry
bus so the metric value byte count actually averages about
3 bytes over the 10 minute run interval. Given that the
telemetry bus is configured to only store 10GB total, there
is an obvious mismatch between the rate of data ingest and
storage and age-out policy. This would be significantly worse
had we been using the cray fmt which would have incurred
an additional ∼11 GB/sec of overhead for this data.

Over the 10 minute test interval we lose some of the data.
As of this writing we have not concurrently written to both
the native LDMS csv store and the kafka store to identify if
the same data would be missing in both. We have only run
this experiment twice, once writing the output to CSV and
the other just to standard out. In both cases data seemed to
be flowing for the entire test but the kafka pod subsequently
died. It is not clear yet if this is what caused it to die or
if it was coincidence. We plan on conducting more of these
experiments while doing some low level monitoring of the
kafka bus to identify what is causing the problems. Note
that the current retention policy has the data retained for four

hours which is probably not realistic for a large scale system.
Also, in the production system Cray intends to make the
kafka bus distributed and implement load balancing which
should enable it to scale out much better.

VI. FUTURE WORK

As we continue to investigate monitoring possibilities on
the Software Preview system we will be looking more into
the following issues:

A. Full port of LDMS to v4

We will be working to coalesce the Cray-enhancements
to LDMS v3 into LDMS v4. The most significant Cray-
developed change is a change to the format of the metricset
schema which is the structural definition of the metricset.
Cray integrated into the schema a nested array of schema
which could be associated with the same global variables
represented in the top schema. The need for this construct
does not apply to any of the samplers presented in this
work, but could apply to representing, for instance, data
from multiple filesystems to be included one per element
of the array. In the store_kafka initial implementation,

the existence of this structure is assumed for Cray-provided
metrics. In LDMS v4, there is a related construct, metricset
groups, which provides some of the same flexibility. We will
be looking at how to best integrate the two designs.

B. Genders-based configuration

The Cray genders-based configuration is intended to sim-
plify the configuration of the various samplers and transport
topology. In future work we will investigate the ability of
genders-based configuration to support the expected flexi-
bility and variability in configuration needed on complex
systems.

C. Application Monitoring

We will include monitoring within containers in our next
steps. This will include more comprehensive monitoring of
the data that we can get from outside of the container, as
well as getting data from the container out and into the data
stream. We will be assessing what other data and metadata
needs to be included in container-based LDMS metricsets.
For example, currently component id and instance infor-
mation is carried for node-based metricsets. Application
identification is provided in LDMS via a SLURM spank
plugin that enables LDMS to include the current job id as
a metric within the set.

D. Scaling out the Telemetry Bus

Cray intends to support load balancing of transport and
access capabilities of the bus to support increased data load.
We will expand the scaling and performance study when
these additional capabilities are made available. It is impor-
tant to assess to ability of the telemetry bus, and the required
supporting hardware, to support the numbers and rates of
metrics that we are collecting even off of current systems
(e.g., NERSC is currently reporting collecting 16TB/day
of LDMS data) particularly in the face of the metric size
expansion in the current json formats.

E. Completing Web Based Monitoring Environment

The way these interfaces are typically used involve iden-
tifying features in broader datasets and drilling down on
subsets of that data to define the source. This process typ-
ically utilizes node metadata such as job id, application id,
username running workload, and group the user is associated
with. When this type of data is available, we will stream the
data via the Telemetry API and insert it into the datastore
to be applied in data reduction functions.

In addition, we failed to export some of the service ports
from the Kubernetes pods to the external networks. This was
the intention for accessing the datastore. It would enable us
to operate the web server on a remote resource and reduce
the number of forwarded connections necessary to access
the web graphs. In this prototype, since the web service was
on SMS04 via docker, we needed an additional persistent
port forwarding service on the gateway system.

For very large data volumes, we will likely need to spool
the incoming datasets and bulkload it into the datastore
to reduce transaction overhead. This can be added to the
python/kafka pod in a simple fashion.

VII. CONCLUSIONS

In this work we extended the Cray Software Preview
System to include user-driven metrics into the telemetry
stream. These were obtained via additional LDMS instances
on the preview system. We extracted the metrics using
the telemetry API, demonstrating how metrics from the
preview system could be pulled off and fed into site-specific
storage. Further we assessed the performance, overhead,
and usability of the monitoring system design through the
implementation and scale testing of the user metrics set up.
Finally, we provided additional assessments of the general
usability of the system, through the mechanics of building,
configuring, and installing the necessary components and
services in the Cray Preview Environment.

Interaction over the Software Preview System is the sites’
opportunity to feedback experiences and recommendations
to Cray. The monitoring system architecture provides im-
provements over past implementations for extensibility and
data access. This is a timely opportunity for the sites to
interact with Cray to ensure that the monitoring system has
the potential to appropriately scale and to incorporate the
necessary resilience features for enhanced monitoring on the
next generation large-scale production systems.

ACKNOWLEDGEMENTS

Sandia National Laboratories is a multimission laboratory
managed and operated by National Technology & Engineer-
ing Solutions of Sandia, LLC, a wholly owned subsidiary
of Honeywell International Inc., for the U.S. Department
of Energy’s National Nuclear Security Administration under
contract DE-NA0003525. The views expressed in the article
do not necessarily represent the views of the U.S. Depart-
ment of Energy or the United States Government.

REFERENCES

[1] A. Agelastos, B. Allan, J. Brandt, P. Cassella, J. Enos,
J. Fullop, A. Gentile, S. Monk, N. Naksinehaboon, J. Ogden,
M. Rajan, M. Showerman, J. Stevenson, N. Taerat, and
T. Tucker, “Lightweight Distributed Metric Service: A Scal-
able Infrastructure for Continuous Monitoring of Large Scale
Computing Systems and Applications,” in Proc. Int’l Conf. for
High Performance Storage, Networking, and Analysis (SC),
2014.

[2] V. Ahlgren et al., “Cray System Monitoring: Successes,
Requirements, Priorities,” in Proc. Cray Users Group, 2018.

[3] Cray Inc., “Cray Software Preview System Administration
and User Guide (0.4.0) Rev A,” 2019. [Online].
Available: https://c-compass.atlassian.net/wiki/download/
attachments/101449729/Cray Software Preview System
Administration and User Guide 040 Rev A.pdf?api=v2

[4] ——, “Cray Software Preview System Installation
Guide (0.4.0) Rev A,” 2019. [Online]. Available:
https://c-compass.atlassian.net/wiki/download/attachments/
101449729/Cray Software Preview System Installation
Guide 040 Rev A.pdf?api=v2

[5] The Apache Software Foundation, “Apache kafka: a
distributed streaming platform,” (Accessed 2019). [Online].
Available: https://kafka.apache.org

[6] Grafana Labs, “Grafana,” (Accessed 2018). [Online].
Available: http://grafana.com

[7] G. Bauer, J. Brandt, A. Gentile, A. Kot, and M. Showerman,
“Dynamic Model Specific Register (MSR) Data Collection as
a System Service,” in Proc. Cray Users Group, 2016.

[8] Cray Inc., “Aries Hardware Counters,” Cray Doc S-0045-20,
2015.

[9] J. Brandt, E. Froese, A. Gentile, L. Kaplan, B. Allan, and
E. Walsh, “Network Performance Counter Monitoring and
Analysis on the Cray XC Platform,” in Proc. Cray Users
Group, 2016.

[10] Cray Inc., “Using the Cray Gemini Hardware Counters,” Cray
Doc S-0025-10, 2010.

[11] ovis hpc, “LDMS github (ovis-hpc/ovis),” (Accessed 2019).
[Online]. Available: https://github.com/ovis-hpc/ovis

[12] The Kubernetes Authors, “Kubernetes: Production-Grade
Container Orchestration,” (Accessed 2019). [Online].
Available: https://kubernetes.io

[13] CHAOS Development Team, “chaos/genders,” (Accessed
2019). [Online]. Available: https://www.github.com/chaos/
genders

[14] Docker, Inc., “Docker: Enterprise Container Platform
for High-Velocity Innovation,” (Accessed 2019). [Online].
Available: https://www.docker.com

[15] Cray Inc., “Cray Software Preview System
Administration and User Guide (0.5.0),” 2019.
[Online]. Available: https://c-compass.atlassian.net/wiki/
download/attachments/138870789/Cray Software Preview
System Administration Guide 050.pdf?api=v2

[16] The Apache Software Foundation, “Apache Cassandra,”
(Accessed 2019). [Online]. Available: https://www.cassandra.
apache.org

