@A BAREFOOT
"/ ACADEMY Copyright © Barefoot Networks, an Intel Company. Public Presentation

BAREFOOT
ACADEMY

Some Ideas for P4,

June 22, 2020

Vladimir Gurevich
Principal Engineer. Director, Barefoot Academy.

@A BAREFOOT
*/ ACADEMY Copyright © Barefoot Networks, an Intel Company. Public Presentation

Agenda

o Composability in P4
o Automatic API generation
e Miscellaneous

S BAREFOOT
"/ ACADEMY Copyright © Barefoot Networks, an Intel Company. Public Presentation

Making P4 More Modular

S BAREFOOT
"/ ACADEMY Copyright © Barefoot Networks, an Intel Company. Public Presentation

Motivation

e Goals

o Better P4 Source Code Reuse
= Ability to have standardized, reusable source code modules
= Ability to extend P4 programs without the need to rewrite the “base”
= Ability to create many variants of the same program

o Eliminate the need to use preprocessors as a “poor-man’s module system”
o Get people thinking
e Non-Goals
o Separate compilation of P4 modules
o Namespaces
o Offer specific solutions

@A BAREFOOT
"/ ACADEMY Copyright © Barefoot Networks, an Intel Company. Public Presentation

Adding a new protocol to an existing base

e Problem:

o Most published P4 programs cannot be used in production networks
e Solution:

o Use "base” code to handle standard L2/L3 protocols if possible

o Add a new protocol on top (as L3, L4, ... L7 extension)
e Challenges:

o Modifying the parser

o Amending the controls

o Modifying the deparser

@B BAREFOOT
"/ ACADEMY Copyright © Barefoot Networks, an Intel Company. Public Presentation

Parser Modifications

enum ip_proto_t {

ICMP = 1, IGMP = 2, TCP = 6, UDP=17 ° Relatively easy with CPP, but

#ifdef MY_PROTOCOL_SUPPORT

pong] MPROTOCOL = 1234 o The base code requires extensive modifications
; o Modifications are spread around and cannot be
struct ingress_headers_t { easily consolidated
st W PROTOCOL SUPORT ot o The post-processed code is difficult to read
fame = ... once additions start to exceed one line
arser Togressparser(pmcet " e Required functionality:

qut ngress_headerst, hdfy What f | need o o Ability to add a new enum value

out ingress_intrinsic_metadata_t ig_intr_md) add a new L3

protocol instead?

o Ability to add a new struct member
o Ability to add a new parser state to the existing

{
state parse_ipv4 {
pkt.extract(hdr.ipv4);
meta.l4_lookup = pkt.lookahead<14_ lookup_t=>();

parser
frensttien Se‘““EgF:1B¥§:$§‘;Ea§§{?“' o Ability to add a new transition to a select()
0, ip_proto_t.I(.ZM'Fj, 5) : parse_icmp; Statement

(

(@, ip_proto_t.IGMP, 5) : parse_igmp;

(@, ip_proto_t.TCP, 5) : parse_tcp;

(@, ip_proto_t.UDP, 5) : parse_udp;
#ifdef MY_PROTOCOL_SUPPORT

(@, ip_proto_t.MY_PROTOCOL, 5) : parse_my_protocol;

= .. or a group of related select() statements
= ... somewhere among the existing transitions

e |Ideally all changes can be kept in one
T TR place

y e |Ideally the base code will provide a list of

what needs or can be modified

#endif

@B BAREFOOT
"/ ACADEMY Copyright © Barefoot Networks, an Intel Company. Public Presentation

Control Modifications (1)

action set_port_properties(vlan_id_t default_vlan,

e Relatively easy with CPP, but

pcp_t default_priority
#ifdef MY_PROTOCOL_SUPPORT o The base code requires extensive modifications
, bool allow_my_protocol . .
sendif o Modifications are spread around and cannot be
) { easily consolidated

meta.default_vlan default_vlan;

neta.default priority = default priority: © The post-processed code is difficult to read
#ifdef MY_PROTOCOL_SUPPORT = ... once additions start to exceed one line
#endir:eta.allow_my_protocol = allow_my_protocol; ° Required functionality:
¥ o Ability to add a new parameter to an existing
table 12_station { aCt_K_)n o ’
key = { _ o Ability to add code to an existing action
Ay MHEF_ne - NEFEss POt - (i) = Before or after existing action code
hdr.ethernet.dst_addr : ternary; - . e
} o Ability to add a new action to an existing table

actions = {
process_ipv4; process_ipv6; process_mpls;
#ifdef MY_PROTOCOL_SUPPORT
process_my_protocol;
#endif
b
¥

@B BAREFOOT
"/ ACADEMY Copyright © Barefoot Networks, an Intel Company. Public Presentation

Control Modifications (2)

table ipv4_acl {
key = {
ig_intr_md.ingress_port : ternary;
hdr.ip.dst_addr : ternary;

#ifdef MY_PROTOCOL_SUPPORT
hdr.my_protocol.field_1 : ternary;
#endif
b
actions = {
drop; copy_to_cpu; mirror; ...

by
b

apply {

switch(12_station.apply().action_run) {
process_ipv4 : { ipv4_control.apply(hdr,
process_ipv6 : { ipv6_control.apply(hdr,
process_ipv4 : { ipv4_control.apply(hdr,
#ifdef MY_PROTOCOL_SUPPORT
process_my_protocol : {
my_protocol_control.apply(hdr,
}
#endif

default : { process_12.apply(); }
}

A BAREFOOT

meta, ...);
meta, ...);
meta, ...);

meta, ...);

e Relatively easy with CPP, but
o The base code requires extensive modifications
o Modifications are spread around and cannot be
easily consolidated
o The post-processed code is difficult to read
= ... once additions start to exceed one line
e Required functionality:
o Ability to add a new parameter to an existing
action

o Ability to add code to an existing action
= Before or after existing action code

o Ability to add a new action to an existing table

o Ability to add another field to the key of an
existing table

o Ability to add code to the existing control in some
specific placed
= Ability to redefine controls, defined in the base code

"/ ACADEMY Copyright © Barefoot Networks, an Intel Company. Public Presentation

Additional Flexibility

control calc_ipv6_hash(

in my_ingress_headers_t hdr, b PrObIem:
in my_ingress_metadata_t meta, o) _ . initi
- b Non tgp level control definitions cannot be
(BT poly) generic
{ . . .
CRCPolynomial {EEi=Tah (e Required functionality
coeff = poly,
e o © Allow non-top-level controls and parsers to be
msb = false, generic
extended = false, Ly
e — OxFFFFFFFF, = Can somewhat be mitigated with typedef
xor = OXFFFFFFFF) poly;
Hash{bit<323>(HashAlgorithm_t.CUSTOM, poly) hash_algo;
action dO_haSh () '{ This is not something that can be
hash — hash_algo.get({ easily abstracted with typedef
hdr.ipv6.src_addr,
hdr.ipv6.dst_addr,
hdr.ipv6.next_hdr,
meta. l4_lookup.word_1,
meta. 14_lookup.word_2
});
¥
apply {
do_hash();
¥
b

S BAREFOOT
*/ ACADEMY Copyright © Barefoot Networks, an Intel Company. Public Presentation

Automatic APl Generation

S BAREFOOT
"/ ACADEMY Copyright © Barefoot Networks, an Intel Company. Public Presentation

Motivational Example. Ascribing an API to an extern

enum el _t { el_valuel, el_value2 } .
enum e2_t { e2_valuel, e2_value2, e2_value3 } ° PrObIem'
o Data Plane and Control Plane APlIs are
extern ext<S> { .
ext(bit<32> paraml, el_t param2); completely orthogonal and cannot be derived
e2_t methodl(in S paraml, from each other
in e2_t param2); o What is the Control Plane API for the extern
e2_t methodl(in S paraml); “ext™?
} Xtz

o How do we know what is the Control Plane API
enum PSA_MeterType_t { PACKETS, BYTES }

enum PSA MeterColor t { RED, GREEN, YELLOW } for the extern “Meter”?
= Can the comment below be related to the code?
extern Meter<s> { o Can we say what MeterConfig is?
Meter(bit<32> n_meters, PSA_MeterType_t type); o What language is this written in?

PSA_MeterColor_t execute(in S index,
in PSA_MeterColor_t color);

e Solution:

, PSA_MeterColor_t execute(in S index); o We need to have a separate (sub)language to
describe the control-plane interface to any object
/* o This description must be a part of the
@ControlPlaneAPI { . . ey
reset(in MeterColor t color); architecture definition (not the user program)
setParams(in S index, in MeterConfig config);
getParams(in S index, out MeterConfig config);
}
*/

@A BAREFOOT
"/ ACADEMY Copyright © Barefoot Networks, an Intel Company. Public Presentation

12

Meters are special objects in P4 Runtime

P4 Code p4runtime.proto
enum PSA_MeterType_t { PACKETS, BYTES } message Entity {
enum PSA_MeterColor_t { RED, GREEN, YELLOW } oneof entity {

ExternEntry extern_entry = 1;

TableEntry table_entry = 2;
extern Meter<S> {

ActionProfileMember action_profile_member = 3;
Meter(bit<32> n_meters, PSA MeterType_t type); ActionProfileGroup action_profile_group = 4;
PSA_MeterColor_t execute(in S index, g By LR G = 2
in PSA_MeterColor t color); DirectMeterEntry d1rect_metfr_?ntry = 6;
PSA_MeterColor_t execute(in S index); CounterEntry counter_entry = 7;
} - - ! DirectCounterEntry direct_counter_entry = 8;
+
+
/*
@ControlPlaneAPI { message MeterEntry {
. uint32 meter_id = 1;
reset(in MeterColor_t color); int64 index = 2;
setParams(in S index, in MeterConfig config); MeterConfig config = 3;)
getParams(in S index, out MeterConfig config); ¥ Thfese dlglnt%ome
rom code
¥ reset/setParams/getParams message MeterConfig {
*/ are still nowhere to be found int64 cir = 1;

in .proto file int64 cburst = 2;
int64 pir = 3;
int64 pburst = 4;

b

@A BAREFOOT
*/ ACADEMY Copyright © Barefoot Networks, an Intel Company. Public Presentation

Why is this important?

e Either we find a generic solution or P4 Runtime will:
o Either remain tied to vimodel or PSA
o Get polluted with tons of incompatible extensions
e Once we know how to ascribe APIs to arbitrary externs...
e We can create APIs for Fixed Function Components too
o Packet Replication (Multicast) Engine
o Traffic Manager (Buffering/Scheduling/Queueing) Engine
o Ports
O ...
e Just add corresponding extern definitions and API descriptions
to the architecture file

@A BAREFOOT
"/ ACADEMY Copyright © Barefoot Networks, an Intel Company. Public Presentation

Miscellaneous

S BAREFOOT
"/ ACADEMY Copyright © Barefoot Networks, an Intel Company. Public Presentation

Special Statements for Language/Architecture

/* Replace with the indication that this is P4_16.
* Make sure that there is a standard way to enforce
*x the required language version */

#include <core.p4>

/* Replace with the indication that this is vlmodel
* architecture. Make sure that there is a standard way
*x to enforce the required architecture version x/
#include <vlmodel.p4>

/* Replace with a first-class language construct x/
control c() {
#if P4_16_VERSION >= 0x010201
my_struct_t s = { ... };
#else
/* Do not forget to change this when you change
* the struct definition! x/
my_struct_t s ={0, 0, 0, 0 };
#endif

#if PSA_VERSION >= 0x010101
PSA_NewCoolExtern(...) cool_extern;
#else

#error "This program requires PSA version 1.1.1 or later"

#endif

£ BAREFOOT
»/ ACADEMY

e Problem:
o Currently, all P4 programs use the same
extension (.p4)
o It is difficult for the tools to figure out:

= The language dialect being used
o P4440r P44s
o The actual version of the language (esp. for P4_16)

= The architecture
o The required version of the architecture

o Writing programs that can be compiled across
multiple versions of language/architecture
requires CPP

e Current solution:

o Run the preprocessor
= Use heuristics to determine language/architecture
= Use preprocessor variables (if defined) to deal with
versioning
e Proposal:

o Define special statements instead

Copyright © Barefoot Networks, an Intel Company. Public Presentation

16

Better Naming Control

control A() {

o e Problem:
e o In common practice, .t or C lv. th f P4 obiect flect full
action al() { } Ingress.t are preferred over © _urrent y, the names o Objects [elie i
JIngress.b.a.t hierarchy of the controls
f::{':(t:) o Most practical P4 programs are peppered with
} unnecessary @name() annotations
I = Especially annoying for actions, since actions can live
only in two places:
control B() { o top-level
A() a; o the same namespace as the table (originally)
apply { O e Required Functionality
a.a g
} P o Global way to control names better:
I = Pull them into top-level

= Pull them into top-level controls/parsers
control Ingress() {

B() b;

apply {
b.apply();

}

SE BAREFOOT _ _ _ 17
ACADEMY Copyright © Barefoot Networks, an Intel Company. Public Presentation

Table Key Fields

table t {
key = {

hdr.ipv4.isValid() : ternary;
hdr.ipv4.dst_addr : ternary;
ig_intr_md.ingress_port[6:@] : ternary

}

/* Proposal x/
table t {

key = {
ipv4_valid

pipe_port

A BAREFOOT
*/ ACADEMY

@name ("ingress_port");

hdr.ipv4.isValid()
hdr.ipv4.dst_addr
ig_intr_md.ingress_port[6:0]

: ternary;
: ternary;
: ternary;

e Problem:

o Table key fields have long, structured names

o When we use expressions, @name() annotation
is almost always required

o Action names are always simple

Proposal (credits: Steffen Smolka):

o Allow for simple names

o For a field/variable use the last portion of the
name

o Require “name =" for expressions and in
ambiguous cases

Copyright © Barefoot Networks, an Intel Company. Public Presentation

Structs as Keys and Action Parameters

struct 12_address_t {

#ifdef VIRTUAL_L2_NETWORKS e Problem:
#1fdef VLAN_IS.BD o Allow adding new fields to a key or action
vlan_id_t vid;
#else e One of the solutions:
bd_id_t bd;
#endif o Allow structs
#endif
mac_address_t mac_addr; (] Challenges:
}

o Lack of P4 Runtime Support

struct ingress_metadata_t {

user_12_meta_t um_12;

user_13_meta_t um_13;

12_address_t 12_dst_addr;
b

/* This allows for better program composability x/

action set_12_properties(user_ 12 _meta_t 12_props) {
meta.um_12 = 12_props;

b

table dmac {
key ={
meta.12_dst_addr : exact;
}

@A BAREFOOT
*/ ACADEMY Copyright © Barefoot Networks, an Intel Company. Public Presentation

19

Thank you

&P BAREFOOT ,
*/ ACADEMY Copyright © Barefoot Networks, an Intel Company. Public Presentation

