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- Precisely model the expected switch behavior (fixed-function 
switch)
- Get switch simulator for testing
- Ability to build automated tools that can reason about switch, 

e.g. to automatically generate interesting packets

- Clear control plane API
- Ability to test switch through fuzzing
- Debuggability

Our Motivation to Use P4



Dataplane
- “Everything is bits”

Controlplane
- API requires names, not implementation (e.g. match field name vs 

match expression)
- Bits have meaning, e.g. a MAC address vs an IP
- Some values aren’t bits, like port names

Control plane and Data plane are not the same



@p4runtime_translation( "...", string)
type bit<10> port_id_t;

 @id(SOME_TABLE_ID)
 table some_table {
   key = {
     metadata.ingress_port : optional @id( 1) @name("ingress_port" );
     headers.ipv4.dst_addr : lpm @id( 2) @format(IPV4_ADDRESS) @name("ipv4_dst");
   }
   actions = {
     drop;
     set_nexthop_id;
     set_wcmp_group_id;
   }
   const default_action = drop;
 }

Example
Controller uses 
strings for ports

To define control 
plane API, we want 
clear names

Different “bits” have different 
meaning in the controller. 
Indicate format (for 
pretty-printing, debuggability)

Controller needs fixed 
IDs for API stability.

Translated types 
can only support 
exact or optional



P4 program clearly allows specification of control plane API.
- Naming, formatting of values, ID allocation are not an 

afterthought but first-class.
- Good support for translated types: program can only do 

equality-comparisons on them (hence optional and set match 
kinds)

- Better support to say something is an IPv4 address once, and 
then being able to use this in many places (currently we use 
@format in every table, instead of once in the header). Similar to 
p4lang/p4-spec#815

What could P4 2.0 look like?

https://github.com/p4lang/p4-spec/issues/815


Match kinds should be clearly specified (right now spec says almost 
nothing about their semantics)
- Including ability to have const tables for new match kinds. 

Unclear how const tables for, say, set match kind would look.

What could P4 2.0 look like?
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