£) Google Cloud

P4 Language - Ideas for
Future Directions

Based on Use-cases of P4 at Google

Stefan Heule <heule@google.com> P4 Language Brainstorming
Google, Network Infrastructure June 22, 2020

Our Motivation to Use P4

- Precisely model the expected switch behavior (fixed-function
switch)
- Get switch simulator for testing
- Ability to build automated tools that can reason about switch,
e.g. to automatically generate interesting packets

- Clear control plane API
- Ability to test switch through fuzzing
- Debuggability

Control plane and Data plane are not the same

Dataplane
- “Everything is bits”

Controlplane
- APl requires names, not implementation (e.g. match field name vs
match expression)
- Bits have meaning, e.g. a MAC address vs an IP
- Some values aren't bits, like port names

Controller uses
strings for ports

Example

@pd4runtime translation("...", string)
type bit<10> port id t;

Translated types Controller needs fixed To define control
eid(somE_raBLE_TD) | €@ only support IDs for API stability. plane API, we want
table some table { | €xactor optional clear names

key = { \\w/ _TZZ////,
metadata.ingress port : optional @id(1) @name("ingress port");

headers.ipv4.dst addr : lpm @id(2) @format (IPV4 ADDRESS) @name ("ipv4 dst");

}
aczizn.s = { Different “bits” have different
SetprrleXthop . meaning in the controller.

_ S Indicate format (for

t id;
} set_wcmp_group_1 pretty-printing, debuggability)

const default action = drop;

}

What could P4 2.0 look like?

P4 program clearly allows specification of control plane API.

- Naming, formatting of values, ID allocation are not an
afterthought but first-class.

- Good support for translated types: program can only do
equality-comparisons on them (hence optional and set match
kinds)

- Better support to say something is an IPv4 address once, and
then being able to use this in many places (currently we use
@format in every table, instead of once in the header). Similar to
p4lang/p4-spec#815

https://github.com/p4lang/p4-spec/issues/815

What could P4 2.0 look like?

Match kinds should be clearly specified (right now spec says almost
nothing about their semantics)
- Including ability to have const tables for new match kinds.
Unclear how const tables for, say, set match kind would look.

A’
Thank you

Stefan Heule <heule@google.com>

Google Cloud

