
P4 Language - Ideas for
Future Directions
Based on Use-cases of P4 at Google

Stefan Heule <heule@google.com>
Google, Network Infrastructure

P4 Language Brainstorming
June 22, 2020

- Precisely model the expected switch behavior (fixed-function
switch)
- Get switch simulator for testing
- Ability to build automated tools that can reason about switch,

e.g. to automatically generate interesting packets

- Clear control plane API
- Ability to test switch through fuzzing
- Debuggability

Our Motivation to Use P4

Dataplane
- “Everything is bits”

Controlplane
- API requires names, not implementation (e.g. match field name vs

match expression)
- Bits have meaning, e.g. a MAC address vs an IP
- Some values aren’t bits, like port names

Control plane and Data plane are not the same

@p4runtime_translation("...", string)
type bit<10> port_id_t;

 @id(SOME_TABLE_ID)
 table some_table {
 key = {
 metadata.ingress_port : optional @id(1) @name("ingress_port");
 headers.ipv4.dst_addr : lpm @id(2) @format(IPV4_ADDRESS) @name("ipv4_dst");
 }
 actions = {
 drop;
 set_nexthop_id;
 set_wcmp_group_id;
 }
 const default_action = drop;
 }

Example
Controller uses
strings for ports

To define control
plane API, we want
clear names

Different “bits” have different
meaning in the controller.
Indicate format (for
pretty-printing, debuggability)

Controller needs fixed
IDs for API stability.

Translated types
can only support
exact or optional

P4 program clearly allows specification of control plane API.
- Naming, formatting of values, ID allocation are not an

afterthought but first-class.
- Good support for translated types: program can only do

equality-comparisons on them (hence optional and set match
kinds)

- Better support to say something is an IPv4 address once, and
then being able to use this in many places (currently we use
@format in every table, instead of once in the header). Similar to
p4lang/p4-spec#815

What could P4 2.0 look like?

https://github.com/p4lang/p4-spec/issues/815

Match kinds should be clearly specified (right now spec says almost
nothing about their semantics)
- Including ability to have const tables for new match kinds.

Unclear how const tables for, say, set match kind would look.

What could P4 2.0 look like?

Thank you
Stefan Heule <heule@google.com>

