PERF: index.unique much slower than get_level_values.drop_duplicates #60213
Labels
Algos
Non-arithmetic algos: value_counts, factorize, sorting, isin, clip, shift, diff
Closing Candidate
May be closeable, needs more eyeballs
Performance
Memory or execution speed performance
Pandas version checks
I have checked that this issue has not already been reported.
I have confirmed this issue exists on the latest version of pandas.
I have confirmed this issue exists on the main branch of pandas.
Reproducible Example
It is not very important but still quite surprising. unique should be the method to use and faster but is twice slower.
df=pd.DataFrame({"M": ["M1","M2"], "P": ["P1", "P2"], "V": [1.,2.]})
i = df.set_index(['M','P']).index
In [6]: %timeit i.unique("M")
30.9 µs ± 958 ns per loop (mean ± std. dev. of 7 runs, 10,000 loops each)
In [7]: %timeit i.get_level_values('M').drop_duplicates()
16.1 µs ± 84 ns per loop (mean ± std. dev. of 7 runs, 100,000 loops each)
Installed Versions
INSTALLED VERSIONS
commit : 0691c5c
python : 3.12.7
python-bits : 64
OS : Linux
OS-release : 6.11.5-200.fc40.x86_64
Version : #1 SMP PREEMPT_DYNAMIC Tue Oct 22 19:13:11 UTC 2024
machine : x86_64
processor :
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 2.2.3
numpy : 2.1.3
pytz : 2024.2
dateutil : 2.9.0.post0
pip : 23.3.2
Cython : 3.0.9
sphinx : None
IPython : 8.23.0
adbc-driver-postgresql: None
adbc-driver-sqlite : None
bs4 : 4.12.3
blosc : None
bottleneck : None
dataframe-api-compat : None
fastparquet : None
fsspec : 2024.6.1
html5lib : 1.1
hypothesis : None
gcsfs : 2023.6.0+1.g7cc53d9
jinja2 : 3.1.4
lxml.etree : 5.1.0
matplotlib : None
numba : None
numexpr : None
odfpy : None
openpyxl : 3.1.2
pandas_gbq : None
psycopg2 : 2.9.9
pymysql : 1.4.6
pyarrow : 17.0.0
pyreadstat : None
pytest : 7.4.3
python-calamine : None
pyxlsb : None
s3fs : None
scipy : 1.11.3
sqlalchemy : 2.0.36
tables : N/A
tabulate : 0.9.0
xarray : N/A
xlrd : 2.0.1
xlsxwriter : 3.1.9
zstandard : 0.22.0
tzdata : 2024.2
qtpy : 2.4.1
pyqt5 : None
Prior Performance
No response
The text was updated successfully, but these errors were encountered: