-
Notifications
You must be signed in to change notification settings - Fork 4
/
webapp.py
320 lines (249 loc) · 13.8 KB
/
webapp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
from data import COCODetection, get_label_map, MEANS, COLORS
from yolact import Yolact
from utils.augmentations import BaseTransform, FastBaseTransform, Resize
from utils.functions import MovingAverage, ProgressBar
from layers.box_utils import jaccard, center_size, mask_iou
from utils import timer
from utils.functions import SavePath
from layers.output_utils import postprocess, undo_image_transformation
from itertools import chain, combinations
from data import cfg, set_cfg, set_dataset
import threading, queue
import numpy as np
import torch, gc
import torch.backends.cudnn as cudnn
from torch.autograd import Variable
import argparse
import time,os,random,cProfile,pickle,json
from collections import defaultdict
from pathlib import Path
from collections import OrderedDict
from PIL import Image
from imutils.video import WebcamVideoStream
import matplotlib.pyplot as plt
import cv2
from multiprocessing.pool import ThreadPool
from queue import Queue
import pycocotools
import scipy.spatial.distance as dist
from GPUtil import showUtilization as gpu_usage
torch.multiprocessing.set_start_method('spawn', force=True)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
## Setting up torch for gpu utilization
if torch.cuda.is_available():
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = True
torch.set_default_tensor_type('torch.cuda.FloatTensor')
cfg.mask_proto_debug = False
iou_thresholds = [x / 100 for x in range(80, 100, 5)] ## Change this value in range of 40-90 for designated performances
coco_cats = {} # Call prep_coco_cats to fill this
coco_cats_inv = {}
color_cache = defaultdict(lambda: {})
## Creating dictinary to store logs
log = {"total_person": 0,"total_person_in_red_zone": 0 , "total_person_in_green_zone": 0}
class SocialDistance:
def __init__(self,id):
# self.cap = cv2.VideoCapture(id)
self.cap = WebcamVideoStream(src = id).start()
self.width = 1280 #640#
self.height = 720 #360#
self.display_lincomb = False
self.crop = True
self.score_threshold = 0.15
self.top_k = 30
self.display_masks = True
self.display_fps = False
self.display_text = True
self.display_bboxes = True
self.display_scores = False
self.fast_nms = True
self.cross_class_nms =True
self.config = 'yolact_plus_base_config'
print('Config specified. Parsed %s from the file name.\n' % self.config)
set_cfg(self.config)
print('Loading model...', end='')
self.trained_model = 'weights/yolact_plus_base_54_800000.pth'
self.model = Yolact()
self.model.load_weights(self.trained_model)
self.model.detect.use_fast_nms = self.fast_nms
self.model.detect.use_cross_class_nms = self.cross_class_nms
self.model.eval()
self.model = self.model.to(device,non_blocking=True)
print(' Done.')
self.model_path = SavePath.from_str(self.trained_model)
def prep_display(self,dets_out, img, h, w, undo_transform=True, class_color=False, mask_alpha=0.45, fps_str=''):
"""
Note: If undo_transform=False then im_h and im_w are allowed to be None.
"""
lineThickness = 2
if undo_transform:
img_numpy = undo_image_transformation(img, w, h)
img_gpu = torch.Tensor(img_numpy).cuda()
else:
img_gpu = img / 255.0
h, w, _ = img.shape
with timer.env('Postprocess'):
save = cfg.rescore_bbox
cfg.rescore_bbox = True
t = postprocess(dets_out, w, h, visualize_lincomb = self.display_lincomb,
crop_masks = self.crop,
score_threshold = self.score_threshold)
cfg.rescore_bbox = save
with timer.env('Copy'):
# idx = t[1].argsort(0, descending=True)[top_k]
if cfg.eval_mask_branch:
# Masks are drawn on the GPU, so don't copy
masks = t[3][:self.top_k]
classes, scores, boxes = [x[:self.top_k].cpu().detach().numpy() for x in t[:3]]
num_dets_to_consider = min(self.top_k, classes.shape[0])
for j in range(num_dets_to_consider):
if scores[j] < self.score_threshold:
num_dets_to_consider = j
break
# Quick and dirty lambda for selecting the color for a particular index
# Also keeps track of a per-gpu color cache for maximum speed
def get_color(j, on_gpu=None):
global color_cache
color_idx = (classes[j] * 5 if class_color else j * 5) % len(COLORS)
if on_gpu is not None and color_idx in color_cache[on_gpu]:
return color_cache[on_gpu][color_idx]
else:
color = COLORS[color_idx]
if not undo_transform:
# The image might come in as RGB or BRG, depending
color = (color[2], color[1], color[0])
if on_gpu is not None:
color = torch.Tensor(color).to(on_gpu).float() / 255.
color_cache[on_gpu][color_idx] = color
return color
# First, draw the masks on the GPU where we can do it really fast
# Beware: very fast but possibly unintelligible mask-drawing code ahead
# I wish I had access to OpenGL or Vulkan but alas, I guess Pytorch tensor operations will have to suffice
if self.display_masks and cfg.eval_mask_branch and num_dets_to_consider > 0:
# After this, mask is of size [num_dets, h, w, 1]
masks = masks[:num_dets_to_consider, :, :, None]
# Prepare the RGB images for each mask given their color (size [num_dets, h, w, 1])
colors = torch.cat([get_color(j, on_gpu=img_gpu.device.index).view(1, 1, 1, 3) for j in range(num_dets_to_consider)], dim=0)
masks_color = masks.repeat(1, 1, 1, 3) * colors * mask_alpha
# This is 1 everywhere except for 1-mask_alpha where the mask is
inv_alph_masks = masks * (-mask_alpha) + 1
# I did the math for this on pen and paper. This whole block should be equivalent to:
# for j in range(num_dets_to_consider):
# img_gpu = img_gpu * inv_alph_masks[j] + masks_color[j]
masks_color_summand = masks_color[0]
if num_dets_to_consider > 1:
inv_alph_cumul = inv_alph_masks[:(num_dets_to_consider-1)].cumprod(dim=0)
masks_color_cumul = masks_color[1:] * inv_alph_cumul
masks_color_summand += masks_color_cumul.sum(dim=0)
img_gpu = img_gpu * inv_alph_masks.prod(dim=0) + masks_color_summand
if self.display_fps:
# Draw the box for the fps on the GPU
font_face = cv2.FONT_HERSHEY_DUPLEX
font_scale = 0.6
font_thickness = 1
text_w, text_h = cv2.getTextSize(fps_str, font_face, font_scale, font_thickness)[0]
img_gpu[0:text_h+8, 0:text_w+8] *= 0.6 # 1 - Box alpha
# Then draw the stuff that needs to be done on the cpu
# Note, make sure this is a uint8 tensor or opencv will not anti alias text for whatever reason
img_numpy = (img_gpu * 255).byte().cpu().detach().numpy()
if self.display_fps:
# Draw the text on the CPU
text_pt = (4, text_h + 2)
text_color = [255, 255, 255]
cv2.putText(img_numpy, fps_str, text_pt, font_face, font_scale, text_color, font_thickness, cv2.LINE_AA)
if num_dets_to_consider == 0:
return img_numpy
if self.display_text or self.display_bboxes:
distance_boxes = []
def all_subsets(ss):
return chain(*map(lambda x: combinations(ss, x), range(0, len(ss)+1)))
def draw_distance(boxes):
"""
input : boxes(type=list)
Make all possible combinations between the detected boxes of persons
perform distance measurement between the boxes to measure distancing
"""
red_counter = 0 ## Countting people who are in high risk
green_counter = 0
for subset in all_subsets(boxes):
if len(subset)==2:
a = np.array((subset[0][2], subset[0][3]))
b = np.array((subset[1][2], subset[1][3]))
dist = np.linalg.norm(a-b) ## Eucledian distance if you want differnt ways to measure distance b/w two boxes you can use the following options
# dist = spatial.distance.cosine(a, b)
# # print ('Eucledian distance is version-1', dist)
# # print ('Eucledian distance is', spatial.distance.euclidean(a, b))
# print ('Cosine distance is', dist)
if dist < 250 :
red_counter += len(subset)
cv2.line(img_numpy, (subset[0][2], subset[0][3]), (subset[1][2], subset[1][3]), (0,0,255) , lineThickness)
elif dist < 300:
green_counter += len(subset)
cv2.line(img_numpy, (subset[0][2], subset[0][3]), (subset[1][2], subset[1][3]), (0,255,0) , lineThickness)
log["total_person_in_red_zone"] = red_counter//2
log["total_person_in_green_zone"] = green_counter//2
# gc.collect()
for j in reversed(range(num_dets_to_consider)):
x1, y1, x2, y2 = boxes[j, :]
color = get_color(j)
score = scores[j]
if self.display_bboxes:
cv2.rectangle(img_numpy, (x1, y1), (x2, y2), color, 1)
if self.display_text:
_class = cfg.dataset.class_names[classes[j]]
if _class == "person":
log["total_person"] = num_dets_to_consider
distance_boxes.append(boxes[j, :].tolist())
draw_distance(distance_boxes)
text_str = '%s: %.2f' % (_class, score) if self.display_scores else _class
font_face = cv2.FONT_HERSHEY_DUPLEX
font_scale = 0.6
font_thickness = 1
text_w, text_h = cv2.getTextSize(text_str, font_face, font_scale, font_thickness)[0]
text_pt = (x1, y1 - 3)
text_color = [255, 255, 255]
cv2.rectangle(img_numpy, (x1, y1), (x1 + text_w, y1 - text_h - 4), color, -1)
cv2.putText(img_numpy, text_str, text_pt, font_face, font_scale, text_color, font_thickness, cv2.LINE_AA)
return img_numpy
def main(self):
q = queue.Queue()
while True:
def frame_render(queue_from_cam):
frame = self.cap.read() # If you capture stream using opencv (cv2.VideoCapture()) the use the following line
# ret, frame = self.cap.read()
frame = cv2.resize(frame,(self.width, self.height))
queue_from_cam.put(frame)
cam = threading.Thread(target=frame_render, args=(q,))
cam.start()
cam.join()
inputs = q.get()
q.task_done()
## Desiging the frame with necessary infos
title = "Social Distance Monitoring - COVID19"
total_person = "Total = {}".format(log["total_person"])
# print(log)
red_zone = "High Risk = {}".format(log["total_person_in_red_zone"])
green_zone = "Safe Distance = {}".format(log["total_person_in_green_zone"])
notification_bar_thickness = 3
overlay = inputs.copy()
background = inputs.copy()
opacity = 0.4
cv2.rectangle(overlay, (0, 0), (1280, 100), (255,255,255), -1)
cv2.rectangle(overlay, (0, 615), (400, 720), (255,255,255), -1)
cv2.addWeighted(overlay,opacity,background,1-opacity,0, inputs)
cv2.putText(inputs,title, (195,50), cv2.FONT_HERSHEY_DUPLEX, 1, (0, 0, 0), 2, cv2.LINE_AA) ### Text Main Title
cv2.putText(inputs,total_person, (50,640), cv2.FONT_HERSHEY_DUPLEX, 0.8, (0, 0, 0), 2, cv2.LINE_AA) ### Text Total Person
cv2.line(inputs, (15,660), (40,660), (0,0,255) , notification_bar_thickness) ### Line red-zone
cv2.putText(inputs,red_zone, (50,670), cv2.FONT_HERSHEY_DUPLEX, 0.8, (0, 0, 255), 1, cv2.LINE_AA) ### Text Red Zone Person
cv2.line(inputs, (15,700), (40,700), (0,255,0) , notification_bar_thickness) ### Line Green-zone
cv2.putText(inputs,green_zone, (50,710), cv2.FONT_HERSHEY_DUPLEX, 0.8, (0, 255, 0), 1, cv2.LINE_AA) ### Text green Zone Person
with torch.no_grad():
inputs = torch.from_numpy(inputs).cuda().float()
images = FastBaseTransform()(inputs.unsqueeze(0))
images = images.to(device )
preds = self.model(images)
frame = self.prep_display(preds, inputs, None, None, undo_transform=False)
ret, jpeg = cv2.imencode('.jpg', frame)
torch.cuda.empty_cache()
return jpeg.tostring()