forked from leestott/IrisData
-
Notifications
You must be signed in to change notification settings - Fork 0
/
nn_backprop.py
381 lines (301 loc) · 11.7 KB
/
nn_backprop.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
# nn_backprop.py
# Python 3.x
import numpy as np
import random
import math
import sys
# helper functions
def loadFile(df):
# load a comma-delimited text file into an np matrix
resultList = []
f = open(df, 'r')
for line in f:
line = line.rstrip('\n') # "1.0,2.0,3.0"
sVals = line.split(',') # ["1.0", "2.0, "3.0"]
fVals = list(map(np.float32, sVals)) # [1.0, 2.0, 3.0]
resultList.append(fVals) # [[1.0, 2.0, 3.0] , [4.0, 5.0, 6.0]]
f.close()
return np.asarray(resultList, dtype=np.float32) # not necessary
# end loadFile
def showVector(v, dec):
fmt = "%." + str(dec) + "f" # like %.4f
for i in range(len(v)):
x = v[i]
if x >= 0.0: print(' ', end='')
print(fmt % x + ' ', end='')
print('')
def showMatrix(m, dec):
fmt = "%." + str(dec) + "f" # like %.4f
for i in range(len(m)):
for j in range(len(m[i])):
x = m[i,j]
if x >= 0.0: print(' ', end='')
print(fmt % x + ' ', end='')
print('')
def showMatrixPartial(m, numRows, dec, indices):
fmt = "%." + str(dec) + "f" # like %.4f
lastRow = len(m) - 1
width = len(str(lastRow))
for i in range(numRows):
if indices == True:
print("[", end='')
print(str(i).rjust(width), end='')
print("] ", end='')
for j in range(len(m[i])):
x = m[i,j]
if x >= 0.0: print(' ', end='')
print(fmt % x + ' ', end='')
print('')
print(" . . . ")
if indices == True:
print("[", end='')
print(str(lastRow).rjust(width), end='')
print("] ", end='')
for j in range(len(m[lastRow])):
x = m[lastRow,j]
if x >= 0.0: print(' ', end='')
print(fmt % x + ' ', end='')
print('')
# -----
class NeuralNetwork:
def __init__(self, numInput, numHidden, numOutput, seed):
self.ni = numInput
self.nh = numHidden
self.no = numOutput
self.iNodes = np.zeros(shape=[self.ni], dtype=np.float32)
self.hNodes = np.zeros(shape=[self.nh], dtype=np.float32)
self.oNodes = np.zeros(shape=[self.no], dtype=np.float32)
self.ihWeights = np.zeros(shape=[self.ni,self.nh], dtype=np.float32)
self.hoWeights = np.zeros(shape=[self.nh,self.no], dtype=np.float32)
self.hBiases = np.zeros(shape=[self.nh], dtype=np.float32)
self.oBiases = np.zeros(shape=[self.no], dtype=np.float32)
self.rnd = random.Random(seed) # allows multiple instances
self.initializeWeights()
def setWeights(self, weights):
if len(weights) != self.totalWeights(self.ni, self.nh, self.no):
print("Warning: len(weights) error in setWeights()")
idx = 0
for i in range(self.ni):
for j in range(self.nh):
self.ihWeights[i,j] = weights[idx]
idx += 1
for j in range(self.nh):
self.hBiases[j] = weights[idx]
idx += 1
for j in range(self.nh):
for k in range(self.no):
self.hoWeights[j,k] = weights[idx]
idx += 1
for k in range(self.no):
self.oBiases[k] = weights[idx]
idx += 1
def getWeights(self):
tw = self.totalWeights(self.ni, self.nh, self.no)
result = np.zeros(shape=[tw], dtype=np.float32)
idx = 0 # points into result
for i in range(self.ni):
for j in range(self.nh):
result[idx] = self.ihWeights[i,j]
idx += 1
for j in range(self.nh):
result[idx] = self.hBiases[j]
idx += 1
for j in range(self.nh):
for k in range(self.no):
result[idx] = self.hoWeights[j,k]
idx += 1
for k in range(self.no):
result[idx] = self.oBiases[k]
idx += 1
return result
def initializeWeights(self):
numWts = self.totalWeights(self.ni, self.nh, self.no)
wts = np.zeros(shape=[numWts], dtype=np.float32)
lo = -0.01; hi = 0.01
for idx in range(len(wts)):
wts[idx] = (hi - lo) * self.rnd.random() + lo
self.setWeights(wts)
def computeOutputs(self, xValues):
hSums = np.zeros(shape=[self.nh], dtype=np.float32)
oSums = np.zeros(shape=[self.no], dtype=np.float32)
for i in range(self.ni):
self.iNodes[i] = xValues[i]
for j in range(self.nh):
for i in range(self.ni):
hSums[j] += self.iNodes[i] * self.ihWeights[i,j]
for j in range(self.nh):
hSums[j] += self.hBiases[j]
for j in range(self.nh):
self.hNodes[j] = self.hypertan(hSums[j])
for k in range(self.no):
for j in range(self.nh):
oSums[k] += self.hNodes[j] * self.hoWeights[j,k]
for k in range(self.no):
oSums[k] += self.oBiases[k]
softOut = self.softmax(oSums)
for k in range(self.no):
self.oNodes[k] = softOut[k]
result = np.zeros(shape=self.no, dtype=np.float32)
for k in range(self.no):
result[k] = self.oNodes[k]
return result
def train(self, trainData, maxEpochs, learnRate):
hoGrads = np.zeros(shape=[self.nh, self.no], dtype=np.float32) # hidden-to-output weights gradients
obGrads = np.zeros(shape=[self.no], dtype=np.float32) # output node biases gradients
ihGrads = np.zeros(shape=[self.ni, self.nh], dtype=np.float32) # input-to-hidden weights gradients
hbGrads = np.zeros(shape=[self.nh], dtype=np.float32) # hidden biases gradients
oSignals = np.zeros(shape=[self.no], dtype=np.float32) # output signals: gradients w/o assoc. input terms
hSignals = np.zeros(shape=[self.nh], dtype=np.float32) # hidden signals: gradients w/o assoc. input terms
epoch = 0
x_values = np.zeros(shape=[self.ni], dtype=np.float32)
t_values = np.zeros(shape=[self.no], dtype=np.float32)
numTrainItems = len(trainData)
indices = np.arange(numTrainItems) # [0, 1, 2, . . n-1] # rnd.shuffle(v)
while epoch < maxEpochs:
self.rnd.shuffle(indices) # scramble order of training items
for ii in range(numTrainItems):
idx = indices[ii]
for j in range(self.ni):
x_values[j] = trainData[idx, j] # get the input values
for j in range(self.no):
t_values[j] = trainData[idx, j+self.ni] # get the target values
self.computeOutputs(x_values) # results stored internally
# 1. compute output node signals
for k in range(self.no):
derivative = (1 - self.oNodes[k]) * self.oNodes[k] # softmax
oSignals[k] = derivative * (self.oNodes[k] - t_values[k]) # E=(t-o)^2 do E'=(o-t)
# 2. compute hidden-to-output weight gradients using output signals
for j in range(self.nh):
for k in range(self.no):
hoGrads[j, k] = oSignals[k] * self.hNodes[j]
# 3. compute output node bias gradients using output signals
for k in range(self.no):
obGrads[k] = oSignals[k] * 1.0 # 1.0 dummy input can be dropped
# 4. compute hidden node signals
for j in range(self.nh):
sum = 0.0
for k in range(self.no):
sum += oSignals[k] * self.hoWeights[j,k]
derivative = (1 - self.hNodes[j]) * (1 + self.hNodes[j]) # tanh activation
hSignals[j] = derivative * sum
# 5 compute input-to-hidden weight gradients using hidden signals
for i in range(self.ni):
for j in range(self.nh):
ihGrads[i, j] = hSignals[j] * self.iNodes[i]
# 6. compute hidden node bias gradients using hidden signals
for j in range(self.nh):
hbGrads[j] = hSignals[j] * 1.0 # 1.0 dummy input can be dropped
# update weights and biases using the gradients
# 1. update input-to-hidden weights
for i in range(self.ni):
for j in range(self.nh):
delta = -1.0 * learnRate * ihGrads[i,j]
self.ihWeights[i, j] += delta
# 2. update hidden node biases
for j in range(self.nh):
delta = -1.0 * learnRate * hbGrads[j]
self.hBiases[j] += delta
# 3. update hidden-to-output weights
for j in range(self.nh):
for k in range(self.no):
delta = -1.0 * learnRate * hoGrads[j,k]
self.hoWeights[j, k] += delta
# 4. update output node biases
for k in range(self.no):
delta = -1.0 * learnRate * obGrads[k]
self.oBiases[k] += delta
epoch += 1
if epoch % 10 == 0:
mse = self.meanSquaredError(trainData)
print("epoch = " + str(epoch) + " ms error = %0.4f " % mse)
# end while
result = self.getWeights()
return result
# end train
def accuracy(self, tdata): # train or test data matrix
num_correct = 0; num_wrong = 0
x_values = np.zeros(shape=[self.ni], dtype=np.float32)
t_values = np.zeros(shape=[self.no], dtype=np.float32)
for i in range(len(tdata)): # walk thru each data item
for j in range(self.ni): # peel off input values from curr data row
x_values[j] = tdata[i,j]
for j in range(self.no): # peel off tareget values from curr data row
t_values[j] = tdata[i, j+self.ni]
y_values = self.computeOutputs(x_values) # computed output values)
max_index = np.argmax(y_values) # index of largest output value
if abs(t_values[max_index] - 1.0) < 1.0e-5:
num_correct += 1
else:
num_wrong += 1
return (num_correct * 1.0) / (num_correct + num_wrong)
def meanSquaredError(self, tdata): # on train or test data matrix
sumSquaredError = 0.0
x_values = np.zeros(shape=[self.ni], dtype=np.float32)
t_values = np.zeros(shape=[self.no], dtype=np.float32)
for ii in range(len(tdata)): # walk thru each data item
for jj in range(self.ni): # peel off input values from curr data row
x_values[jj] = tdata[ii, jj]
for jj in range(self.no): # peel off tareget values from curr data row
t_values[jj] = tdata[ii, jj+self.ni]
y_values = self.computeOutputs(x_values) # computed output values
for j in range(self.no):
err = t_values[j] - y_values[j]
sumSquaredError += err * err # (t-o)^2
return sumSquaredError / len(tdata)
@staticmethod
def hypertan(x):
if x < -20.0:
return -1.0
elif x > 20.0:
return 1.0
else:
return math.tanh(x)
@staticmethod
def softmax(oSums):
result = np.zeros(shape=[len(oSums)], dtype=np.float32)
m = max(oSums)
divisor = 0.0
for k in range(len(oSums)):
divisor += math.exp(oSums[k] - m)
for k in range(len(result)):
result[k] = math.exp(oSums[k] - m) / divisor
return result
@staticmethod
def totalWeights(nInput, nHidden, nOutput):
tw = (nInput * nHidden) + (nHidden * nOutput) + nHidden + nOutput
return tw
# end class NeuralNetwork
def main():
print("\nBegin NN back-propagation demo \n")
pv = sys.version
npv = np.version.version
print("Using Python version " + str(pv) +
"\n and NumPy version " + str(npv))
numInput = 4
numHidden = 5
numOutput = 3
print("\nCreating a %d-%d-%d neural network " %
(numInput, numHidden, numOutput) )
nn = NeuralNetwork(numInput, numHidden, numOutput, seed=3)
print("\nLoading Iris training and test data ")
trainDataPath = "irisTrainData.txt"
trainDataMatrix = loadFile(trainDataPath)
print("\nTest data: ")
showMatrixPartial(trainDataMatrix, 4, 1, True)
testDataPath = "irisTestData.txt"
testDataMatrix = loadFile(testDataPath)
maxEpochs = 50
learnRate = 0.05
print("\nSetting maxEpochs = " + str(maxEpochs))
print("Setting learning rate = %0.3f " % learnRate)
print("\nStarting training")
nn.train(trainDataMatrix, maxEpochs, learnRate)
print("Training complete")
accTrain = nn.accuracy(trainDataMatrix)
accTest = nn.accuracy(testDataMatrix)
print("\nAccuracy on 120-item train data = %0.4f " % accTrain)
print("Accuracy on 30-item test data = %0.4f " % accTest)
print("\nEnd demo \n")
if __name__ == "__main__":
main()
# end script