-
Notifications
You must be signed in to change notification settings - Fork 0
/
Emissions_MainePDF.Rmd
2760 lines (2451 loc) · 153 KB
/
Emissions_MainePDF.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
---
title: "Transportation Burdens and Emissions in Maine"
author: "Marcos Luna and Neenah Estrella-Luna"
date: "`r Sys.Date()`"
output:
bookdown::pdf_document2:
toc: true
toc_depth: 3
number_sections: true
fig_caption: yes
includes:
in_header: my_header.tex
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo=FALSE, message=FALSE, warning=FALSE)
```
\pagebreak
# Analysis of transportation-related emissions in Maine
This is an analysis of transportation-related emissions and related externalities in Maine.
## PM~2.5~ in Maine
PM~2.5~ refers to particulate matter in the air that is 2.5 microns or less in diameter (about 30 times smaller than the width of a human hair). These small particulates pose a threat to human health because they can penetrate deeply into the lungs and even enter the bloodstream. The EPA has documented that exposure to PM~2.5~ is associated with health effects such as elevated risk of premature mortality from cardiovascular diseases or lung cancer, and increased health problems such as asthma attacks.[^EPAPM10] Moreover, the EPA has found that people with pre-existing heart or lung disease, children and older adults, and nonwhite populations are at particular risk.[^EPAPM10risk]
Sources of PM~2.5~ emissions include power plants and industrial facilities that burn coal or petroleum-based fuels (i.e., oil or natural gas). However, most PM~2.5~ forms in the atmosphere as a result of chemical reactions between gases such as oxides of nitrogen (NO~x~) or sulfur dioxide (SO~2~), which are pollutants emitted from power plants, industries, and automobiles. PM~2.5~ has been regulated by the US EPA under the National Ambient Air Quality Standards (NAAQS) since 1997. As of April 2020, the EPA's primary (health-based) standard for PM~2.5~ is an annual average of 12$\mu$g/m^3^ (12 micrograms per cubic meter of air).[^EPAPM25standards] Research shows that PM~2.5~ continues to have a significant negative impact on mortality at concentrations below the EPA's standard.[^LOWPM25research] Former EPA officials and scientists in an Independent Particulate Matter Review Panel have found that the current standard is not protective of public health and recommend that the annual standard be revised to a range of 10$\mu$g/m^3^ to 8$\mu$g/m^3^. However, even at the lower end of the range, risk is not reduced to zero.[^IPMRP]
The analysis of PM~2.5~ presented here is based on data from the EPA's EJSCREEN.[^EJSCREEN] EJSCREEN data provides PM~2.5~ annual concentrations at the Census Block Group level for the years 2011 to 2016 (as of December 2019).
PM~2.5~ levels vary significantly across Maine, with highest concentrations in the southeast from Saco to Bangor along I-95 (see Figure \@ref(fig:mapPM25) below).
```{r data, include=FALSE}
library(tidyverse)
library(sf)
library(tmap)
library(tmaptools)
library(maptools)
# library(raster)
library(rgdal)
library(RColorBrewer)
library(sp)
library(CGPfunctions) # for slope graphs
library(ggcorrplot)
library(spdep)
# ne_blkgrp_sf %>%
# as.data.frame() %>%
# transmute(`PM2.5 2011` = pm_15, `PM2.5 2016` = PM25_19) %>%
# summary()
# Load data
load("DATA/ne_layers.rds")
# Create data subsets of Maine
me_blkgrp_sf <- ne_blkgrp_sf %>%
filter(STATE == "Maine") %>%
st_transform(., crs = 2802)
me_blkgrp_sf90 <- ne_blkgrp_sf90 %>%
filter(STATE == "Maine") %>%
st_transform(., crs = 2802)
# Create point layer of larger municipalities for context
library(tigris)
options(tigris_class = "sf")
me_towns_sf_pts <- county_subdivisions(state = "ME", cb = TRUE) %>%
filter(NAME %in% c("Portland",
"Brunswick",
"Lewiston",
"Augusta",
"Waterville",
"Farmington",
"Bangor",
"Rockland",
"Belfast",
"Bar Harbor",
"Machias",
"Danforth",
"Houlton",
"Medway",
"Allagash",
"Caribou",
"Presque Isle",
"Jackman",
"Saco",
"Kittery",
"Bethel")) %>%
st_transform(., crs = 2802) %>%
st_centroid(of_largest_polygon = TRUE)
me_highways2nd <- primary_secondary_roads("ME") %>%
filter(FULLNAME %in% c("I- 295","I- 95","US Hwy 201","US Hwy 202","US Hwy 1","US Hwy 2","Maine Tpke")) %>%
st_transform(., crs = 2802)
# Extract highway segments for labeling
I295roadSegment <- me_highways2nd %>%
filter(LINEARID == "1102638666973")
I95roadSegment <- me_highways2nd %>%
filter(LINEARID == "1105084080161")
I95roadSegment2 <- me_highways2nd %>%
filter(LINEARID == "1104470496492")
# Create custom icons of highway shields
I295 <- tmap_icons(file = "https://upload.wikimedia.org/wikipedia/commons/thumb/4/41/I-295.svg/200px-I-295.svg.png")
I95 <- tmap_icons(file = "https://upload.wikimedia.org/wikipedia/commons/thumb/6/61/I-95.svg/200px-I-95.svg.png")
```
```{r mapPM25, fig.align = "center", fig.cap="Map of 2016 annual PM2.5 concentrations across Maine at Census Block Group level."}
# Map of PM2.5 across Maine
m1 <- tm_shape(me_blkgrp_sf, unit = "mi") +
tm_fill("PM25_19", style = "quantile",
title = expression(paste
(PM[2.5]," (", mu, "g/", m^3, ")", sep = "")),
legend.hist = FALSE,
colorNA = NULL,
textNA = NULL,
legend.format=list(list(digits=2)),
legend.is.portrait = TRUE) +
tm_shape(ne_states_sf_cb) + tm_borders(lwd = 0.2, alpha = 0.8) +
tm_text("STUSPS", size = 0.7, remove.overlap = TRUE, col = "gray") +
tm_shape(me_highways2nd) + tm_lines(col = "seashell4", lwd = 0.5) +
tm_shape(I295roadSegment) +
tm_symbols(shape = I295, border.lwd = NA, size = 0.1) +
tm_shape(I95roadSegment) +
tm_symbols(shape = I95, border.lwd = NA, size = 0.1) +
tm_shape(I95roadSegment2) +
tm_symbols(shape = I95, border.lwd = NA, size = 0.1) +
tm_shape(me_towns_sf_pts) + tm_dots() +
tm_text("NAME", size = 0.5, col = "black",
xmod = 0.7, ymod = 0.2, shadow = TRUE) +
tm_scale_bar(breaks = c(0, 25, 50), text.size = 0.5,
position = c("right","bottom")) +
tm_layout(title = "Annual PM2.5 \nConcentrations\n2016",
frame = FALSE, main.title.size = 0.8,
legend.outside = TRUE,
legend.title.size = 0.8,
legend.outside.position = c("right", "top"),
legend.hist.width = 0.9)
tmap_save(m1, "DATA/EJSCREEN/me_pm25.png",
height = 7, width = 8, units = "in", dpi = 600)
knitr::include_graphics("DATA/EJSCREEN/me_pm25.png")
```
PM~2.5~ concentrations exhibit spatial clustering of both hot spots (i.e. geographic clusters of high values) and cold spots (i.e. geographic clusters of lower values). The map below (Figure \@ref(fig:hotspotPM25)) shows statistically significant PM~2.5~ hot spots.
```{r hotspotPM25, fig.align = "center", fig.cap="Hot spot map of 2016 annual PM2.5 concentrations at Census Block Group level."}
# Get rid of empty geometries and NAs, and convert to spdf
empty_geo <- st_is_empty(me_blkgrp_sf)
ne_blkgrp_sp_DemoEJ <- me_blkgrp_sf[!empty_geo,] %>%
dplyr::select(GEOID,PM25_19) %>%
# st_transform(., crs = 2163) %>% # convert to US National Atlas Equal Area
na.omit() %>%
as_Spatial()
# Calculate Queen's case neighbors
neighborsQC <- poly2nb(ne_blkgrp_sp_DemoEJ, queen = TRUE)
# Compute neighbor weights
# spdep::set.ZeroPolicyOption(TRUE)
listw <- nb2listw(neighborsQC, style = "W", zero.policy = TRUE)
# compute Getis-Ord Gi statistic
local_g <- localG(ne_blkgrp_sp_DemoEJ$PM25_19, listw)
local_g <- cbind(ne_blkgrp_sp_DemoEJ, as.matrix(local_g))
names(local_g)[3] <- "gstat"
# map the results
m2 <- tm_shape(local_g, unit = "mi",) +
tm_fill("gstat",
palette = "-RdBu",
style = "pretty",
title = expression(paste("Getis-Ord ", G[i]^"*")),
showNA = FALSE,
midpoint = NA,
labels = c("Significant Clusters","of Low Values","","No Significant Clusters","","Significant Clusters","of High Values"),
legend.show = FALSE) +
tm_shape(ne_states_sf_cb) + tm_borders(lwd = 0.2, alpha = 0.8) +
tm_text("STUSPS", size = 0.7, remove.overlap = TRUE, col = "gray") +
tm_shape(me_highways2nd) + tm_lines(col = "seashell4", lwd = 0.5) +
tm_shape(I295roadSegment) +
tm_symbols(shape = I295, border.lwd = NA, size = 0.1) +
tm_shape(I95roadSegment) +
tm_symbols(shape = I95, border.lwd = NA, size = 0.1) +
tm_shape(I95roadSegment2) +
tm_symbols(shape = I95, border.lwd = NA, size = 0.1) +
tm_shape(me_towns_sf_pts) + tm_dots() +
tm_text("NAME", size = 0.5, col = "black",
xmod = 0.7, ymod = 0.2, shadow = TRUE) +
tm_scale_bar(breaks = c(0, 25, 50), text.size = 0.5,
position = c("right","bottom")) +
tm_add_legend(type = "fill",
title = "Getis-Ord Hot Spot\nClassification",
labels = c("Significant Clusters","of High Values", "","No Significant Clusters", "","Significant Clusters","of Low Values"),
col = c("#B2182B","#EF8A62","#FDDBC7","#F7F7F7",
"#D1E5F0","#67A9CF","#2166AC"),
border.col = "white", border.alpha = 0) +
tm_layout(title = "Hot Spot Map \nof PM2.5 for \nMaine",
frame = FALSE, main.title.size = 0.8,
legend.outside = TRUE,
legend.title.size = 0.8,
legend.outside.position = c("right", "top"))
tmap_save(m2, "DATA/EJSCREEN/me_pm25hotspot.png",
height = 7, width = 8, units = "in", dpi = 600)
knitr::include_graphics("DATA/EJSCREEN/me_pm25hotspot.png")
```
There is a statistically significant hot spot of PM~2.5~ from Augusta to Bangor. Warm clusters extend across the southeast from Saco to Bangor.
These PM~2.5~ levels vary significantly across the state (see Table \@ref(tab:statsPM) and Figure \@ref(fig:boxplotPM25)). See Table \@ref(tab:PollutantByTown) in Appendix B for concentrations by municipality.
```{r statsPM, echo=FALSE, message=FALSE, warning=FALSE, fig.align = "center", fig.cap="Annual PM2.5 concentrations at Census Block Group level for the state."}
me_blkgrp_sf %>%
as.data.frame() %>%
# group_by(STATE) %>%
summarize(Mean = round(mean(PM25_19, na.rm = TRUE),2),
Median = round(median(PM25_19, na.rm = TRUE),2),
Min = round(min(PM25_19, na.rm = TRUE),2),
Max = round(max(PM25_19, na.rm = TRUE),2)) %>%
kableExtra::kable(longtable = T, booktabs = T,
format.args = list(big.mark = ','),
caption = "Annual 2016 PM2.5 concentrations (micrograms per cubic meter) by Census block group for the state.", align = "r") %>%
kableExtra::kable_styling(latex_options = c("repeat_header"))
```
```{r CO2outliers, include=FALSE}
# download municipal polygons
me_towns_sf <- county_subdivisions("ME") %>%
select(NAME) %>%
st_transform(., crs = st_crs(me_blkgrp_sf))
# extract block groups centroid with highest and lowest values, intersect with town polygons, and pull out town name
me_town_max <- me_blkgrp_sf %>%
filter(PM25_19 == max(PM25_19,na.rm = TRUE)) %>%
st_centroid() %>%
st_intersection(me_towns_sf,.) %>%
slice(.,1) %>%
pull(., NAME)
me_town_min <- me_blkgrp_sf %>%
filter(PM25_19 == min(PM25_19,na.rm = TRUE)) %>%
st_centroid() %>%
st_intersection(me_towns_sf,.) %>%
slice(.,1) %>%
pull(., NAME)
```
The Block Group with highest PM~2.5~ concentration value in the state is found in `r me_town_max` and the lowest is found in `r me_town_min`. See Table \@ref(tab:PollutantByTown) in Appendix B for concentrations by municipality.
Figure \@ref(fig:boxplotPM25) is a boxplot of PM~2.5~ concentrations by Block Group . The box represents concentration values ranging between the 25th and 75th percentiles. The line that divides the box into two parts represents the median PM~2.5~ concentration for all Block Groups, which in this case is `r round(median(me_blkgrp_sf$PM25_19, na.rm = TRUE),2)`. Half of the state's Block Groups are below the median and half are above the median. Each dot represents an individual Block Group. Large black dots on left represent outliers, or unusually low values relative to the state.
```{r boxplotPM25, fig.align = "center", fig.cap="Boxplot of 2016 annual PM2.5 concentrations at Census Block Group level. 1 dot = 1 Block Group."}
# boxplot of PM2.5 by state for 2016
me_blkgrp_sf %>%
as.data.frame() %>%
ggplot(aes(x = STATE, y = PM25_19, fill = STATE)) +
geom_boxplot() +
geom_jitter(color = "black", size = 0.4, alpha = 0.6) +
ggtitle(expression(atop(paste(PM[2.5], " Annual Concentrations in Maine,"), "2016"))) +
theme_minimal() +
theme(legend.position = "none", axis.text=element_text(size=8)) +
xlab(NULL) +
ylab(expression(paste(PM[2.5]," (", mu, "g/", m^3, ")", sep = ""))) +
coord_flip()
# me_blkgrp_sf %>%
# as.data.frame() %>%
# ggplot(aes(x = PM25_19)) + geom_histogram()
```
Since 2011, PM~2.5~ levels have declined across the state, on average by `r {round(mean(me_blkgrp_sf$PM25_pctChange, na.rm = TRUE),1)}`%. Unsurprisingly, this decline has not been uniform (see Figure \@ref(fig:mapPM25change) below). The greatest declines, up to `r {round(min(me_blkgrp_sf$PM25_pctChange, na.rm = TRUE),1)}`%, have been in the south (around Saco) and northeast (around Presque Isle) of the state.
```{r mapPM25change, fig.align = "center", fig.cap="Map of percent change in annual PM2.5 concentrations across Maine between 2011 and 2016 at Census Block Group level."}
# Map of PM2.5 change across Maine
m3 <- tm_shape(me_blkgrp_sf, unit = "mi") +
tm_fill("PM25_pctChange", palette = "Greens",
style = "quantile",
title = "% Change",
legend.hist = FALSE,
colorNA = NULL,
textNA = NULL,
legend.format=list(list(digits=1)),
legend.is.portrait = TRUE) +
tm_shape(ne_states_sf_cb) + tm_borders(lwd = 0.2, alpha = 0.8) +
tm_text("STUSPS", size = 0.7, remove.overlap = TRUE, col = "gray") +
tm_shape(me_highways2nd) + tm_lines(col = "seashell4", lwd = 0.5) +
tm_shape(I295roadSegment) +
tm_symbols(shape = I295, border.lwd = NA, size = 0.1) +
tm_shape(I95roadSegment) +
tm_symbols(shape = I95, border.lwd = NA, size = 0.1) +
tm_shape(I95roadSegment2) +
tm_symbols(shape = I95, border.lwd = NA, size = 0.1) +
tm_shape(me_towns_sf_pts) + tm_dots() +
tm_text("NAME", size = 0.5, col = "black",
xmod = 0.7, ymod = 0.2, shadow = TRUE) +
tm_scale_bar(breaks = c(0, 25, 50), text.size = 0.5,
position = c("right","bottom")) +
tm_layout(title = "Change in\nannual PM2.5\nConcentrations \n2011-2016",
frame = FALSE, main.title.size = 0.8,
legend.outside = TRUE,
legend.title.size = 0.8,
legend.outside.position = c("right", "top"),
legend.hist.width = 0.9)
tmap_save(m3, "DATA/EJSCREEN/me_pm25change.png",
height = 7, width = 8, units = "in", dpi = 600)
knitr::include_graphics("DATA/EJSCREEN/me_pm25change.png")
```
Figure \@ref(fig:slopegraphPM25) below compares the average annual PM~2.5~ concentrations for the state and the region between 2011 and 2016. The region and the state both showed significant declines since 2011. Concentrations in Maine remain below the rest of the region.
```{r slopegraphPM25, fig.align = "center", fig.cap="Change in population-weighted concentrations of PM2.5 between 2011 and 2016 for Maine and New England."}
# Slope graph of PM2.5 by state and region between 2011 and 2016
# Create df of 2019 actual values
PM19wSTAvgs_actual <- me_blkgrp_sf %>%
as.data.frame() %>%
group_by(STATE) %>%
summarize(PM25Mean = mean(PM25_19, na.rm = TRUE),
PM25wMean = weighted.mean(x = PM25_19,
w = totalpopE, na.rm = TRUE)) %>%
mutate(Year = 2016)
# Create df of 2015 values
PM15wSTAvgs_actual <- me_blkgrp_sf %>%
as.data.frame() %>%
group_by(STATE) %>%
summarize(PM25Mean = mean(pm_15, na.rm = TRUE),
PM25wMean = weighted.mean(x = pm_15,
w = pop_15, na.rm = TRUE)) %>%
mutate(Year = 2011)
# Create regional average benchmark
pm15MEavg <- ne_blkgrp_sf %>%
as.data.frame() %>%
summarize(PM25Mean = mean(pm_15, na.rm = TRUE),
PM25wMean = weighted.mean(x = pm_15,
w = pop_15, na.rm = TRUE)) %>%
transmute(STATE = "NEW ENGLAND",
PM25Mean = PM25Mean,
PM25wMean = PM25wMean,
Year = 2011)
pm19MEavg <- ne_blkgrp_sf %>%
as.data.frame() %>%
summarize(PM25Mean = mean(PM25_19, na.rm = TRUE),
PM25wMean = weighted.mean(x = PM25_19,
w = totalpopE, na.rm = TRUE)) %>%
transmute(STATE = "NEW ENGLAND",
PM25Mean = PM25Mean,
PM25wMean = PM25wMean,
Year = 2016)
#rbind tables
PM11_16wSTAvg_actual <- bind_rows(PM15wSTAvgs_actual,
PM19wSTAvgs_actual,
pm15MEavg,pm19MEavg) %>%
mutate(Year = as.factor(Year),
PM25Mean = round(PM25wMean,2),
PM25wMean = round(PM25wMean,2))
# make slope graph
newggslopegraph(dataframe = PM11_16wSTAvg_actual,
Times = Year,
Measurement = PM25Mean,
Grouping = STATE,
Title = expression(paste("Annual Average ", PM[2.5], " Concentrations")),
SubTitle = expression(paste
(PM[2.5]," (", mu, "g/", m^3, ")", sep = "")),
Caption = NULL,
LineColor = c("NEW ENGLAND" = "#000000",
"Maine" = "#E69F00",
"Massachusetts" = "#56B4E9",
"Maine" = "#009E73",
"Maine" = "#F0E442",
"Maine" = "#0072B2",
"Maine" = "#D55E00"),
LineThickness = 1,
YTextSize = 3.5,
DataTextSize = 3,
WiderLabels = TRUE)
```
### PM~2.5~ in Maine and Priority Populations
In addition to variations in the general geography of PM~2.5~ concentrations, exposure to these pollutants also varies demographically. Figure \@ref(fig:barplotPM25PopAvg) below shows population-weighted exposures for priority populations relative to average PM~2.5~ concentrations for the state. For example, limited English speaking households are exposed to PM~2.5~ concentrations that are over 1.8% above concentrations for the state as a whole. By contrast, adults without a high school diploma are exposed to concentrations below the state average.
```{r barplotPM25PopAvg, fig.align = "center", fig.cap="Population-weighted average exposures to PM2.5 for priority populations in Maine relative to the state average."}
# Pop Weighted avg of PM2.5 for all Groups in Maine relative to state average
me_blkgrp_sf %>%
as.data.frame() %>%
dplyr::select(totalpopE,
nhwhitepopE,
minorityE,
nhblackpopE,
nhamerindpopE,
nhasianpopE,
nhnativhpopE,
nhotherpopE,
nh2morepopE,
hisppopE,
povknownE,
num2povE,
eng_hhE,
eng_limitE,
age25upE,
lthsE,
allAgesE,
under5E,
over64E,
PM25_19) %>%
gather(key = Group, value = Pop, totalpopE:over64E) %>%
group_by(Group) %>%
summarize(PM25wMean = weighted.mean(x = PM25_19, w = Pop, na.rm = TRUE),
PM25Mean = mean(PM25_19, na.rm = TRUE)) %>%
spread(key = Group, value = PM25wMean) %>%
transmute(`People of Color` = (minorityE/PM25Mean - 1)*100,
#Minority_MEW = (minorityE/nhwhitepopE - 1)*100,
`Limited English HH` = (eng_limitE/PM25Mean - 1)*100,
`Low Income` = (num2povE/PM25Mean - 1)*100,
`No HS Diploma` = (lthsE/PM25Mean - 1)*100,
`Under 5` = (under5E/PM25Mean - 1)*100,
`Over 64` = (over64E/PM25Mean - 1)*100) %>%
gather(key = Group, value = Pct) %>%
ggplot(aes(x = reorder(Group,Pct),
y = Pct)) +
geom_segment(aes(x = reorder(Group,Pct),
xend = reorder(Group,Pct),
y = 0, yend = Pct),
color = "skyblue") +
geom_point(color = "blue", size = 4, alpha = 0.8) +
coord_flip() +
labs(x = "", y = "", title = expression(atop(paste("Population-Weighted ", PM[2.5], " Exposure"), "(relative to Maine average)"))) +
theme_light() +
theme(panel.grid.major.y = element_blank(),
panel.border = element_blank(),
axis.ticks.y = element_blank()) +
geom_text(aes(x = Group, y = Pct + 0.2 * sign(Pct),
label = paste0(round(Pct,2),"%")),
hjust = 0.5, vjust = -.8, size = 3,
color=rgb(100,100,100, maxColorValue=255)) +
scale_y_continuous(labels = function(x) paste0(x, "%")) +
geom_hline(yintercept = 0, linetype = "dashed") +
geom_text(aes(x = "Low Income", y = 1, label = "Above state\naverage"),
color = "gray48") +
geom_text(aes(x = "Low Income", y = -0.5, label = "Below state\naverage"),
color = "gray48") +
# geom_segment(aes(x = "Over 64", xend = "Over 64", y = 0.5, yend = 1.2),
# arrow = arrow(length = unit(0.3,"cm"))) +
expand_limits(y = c(-1,2.5))
#savegraph to image
ggsave("images/ME_PM25_graph.png")
```
Like the region as a whole, these populations have also experienced a decline in exposure since 2011. The comparison between exposure for these groups since 2011 is displayed below in Figure \@ref(fig:slopegraphPM25PopAvgNE). Except for adults without a high school dipoma, all priority populations experience exposures greater than the state average.
```{r slopegraphPM25PopAvgNE, fig.align = "center", fig.cap="Change in population-weighted exposure to PM2.5 for priority populations between 2011 and 2016."}
# Pop Weighted avg of PM2.5 EXPOSURE CHANGE 2011 - 2016 for all Groups in Maine relative to NE average.
# Create df of 2019 actual values
PM19wAvgs_actual <- me_blkgrp_sf %>%
as.data.frame() %>%
drop_na(PM25_19) %>%
# filter(STATE == "Massachusetts") %>%
dplyr::select(minorityE,
num2povE,
eng_limitE,
lthsE,
under5E,
over64E,
PM25_19) %>%
gather(key = Group, value = Pop, minorityE:over64E) %>%
group_by(Group) %>%
summarize(PM25wMean = weighted.mean(x = PM25_19,
w = Pop, na.rm = TRUE)) %>%
mutate(Group = case_when(
Group == "minorityE" ~ "People of Color",
Group == "eng_limitE" ~ "Limited English HH",
Group == "num2povE" ~ "Low Income",
Group == "lthsE" ~ "No HS Diploma",
Group == "under5E" ~ "Under 5",
Group == "over64E" ~ "Over 64")) %>%
mutate(Year = 2016)
# Create df of 2015 values
PM15wAvgs_actual <- me_blkgrp_sf %>%
as.data.frame() %>%
drop_na(pm_15) %>%
# filter(STATE == "Massachusetts") %>%
dplyr::select(mins_15,
lowinc_15,
lingiso_15,
lths_15,
under5_15,
over64_15,
pm_15) %>%
gather(key = Group, value = Pop, mins_15:over64_15) %>%
group_by(Group) %>%
summarize(PM25wMean = weighted.mean(x = pm_15,
w = Pop, na.rm = TRUE)) %>%
mutate(Group = case_when(
Group == "mins_15" ~ "People of Color",
Group == "lingiso_15" ~ "Limited English HH",
Group == "lowinc_15" ~ "Low Income",
Group == "lths_15" ~ "No HS Diploma",
Group == "under5_15" ~ "Under 5",
Group == "over64_15" ~ "Over 64")) %>%
mutate(Year = 2011)
# Create regional average benchmark
pm15MEavg <- mean(me_blkgrp_sf$pm_15, na.rm = TRUE)
pm19MEavg <- mean(me_blkgrp_sf$PM25_19, na.rm = TRUE)
pmRegionalAvg_actual <- data.frame(
Group = c("STATE AVG", "STATE AVG"),
PM25wMean = c(pm15MEavg,pm19MEavg),
Year = c(2011,2016)
)
#rbind tables
PM11_16wAvg_actual <- bind_rows(PM15wAvgs_actual,
PM19wAvgs_actual,
pmRegionalAvg_actual) %>%
mutate(Year = as.factor(Year),
PM25wMean = round(PM25wMean,3))
# make slope graph
newggslopegraph(dataframe = PM11_16wAvg_actual,
Times = Year,
Measurement = PM25wMean,
Grouping = Group,
Title = "Population-Weighted PM2.5 Exposure",
SubTitle = expression(paste
(PM[2.5]," (", mu, "g/", m^3, ")", sep = "")),
Caption = NULL,
LineColor = c("STATE AVG" = "#000000",
"Limited English HH" = "#E69F00",
"People of Color" = "#56B4E9",
"No HS" = "#009E73",
"Poverty" = "#F0E442",
"Under 5" = "#0072B2",
"Over 64" = "#D55E00"),
YTextSize = 3.5,
DataTextSize = 3,
WiderLabels = TRUE)
# save graph to image
ggsave("images/ME_PM25_slope.png")
```
There is a weak positive relationship between the proportion of People of Color or language-isolated households and the concentration of PM~2.5~ (see Figure \@ref(fig:cormatrixPM25PopAvg) in Appendix B).
\pagebreak
## Ozone (O~3~) in Maine
Ground-level ozone (O~3~) is the primary constituent of smog.[^NOTO3hole] However, ozone is not usually emitted directly into the air. It is created at ground level by a chemical reaction in the air between oxides of nitrogen (NO~x~) and volatile organic compounds (VOCs) in the presence of sunlight. These ozone precursor pollutants are emitted from automobile exhaust, gasoline vapors, industrial boilers, refineries, chemical plants, and other sources. Ozone concentrations tend to be highest during the summer months due to increased sunlight and heat. Ozone can also be carried long distances by wind, affecting areas far from the sources of precursor pollutants.
The EPA has documented an association between exposure to ambient ozone and a variety of health outcomes, including reduction in lung function, increased inflammation and increased hospital admissions and mortality.[^EPAPM10risk] People most at risk from breathing air containing ozone include people with asthma, children, older adults, and people who are active outdoors, especially outdoor workers. Children are at greatest risk from exposure to ozone because their lungs are still developing and they are more likely to be active outdoors when ozone levels are high, which increases their exposure. Children are also more likely than adults to have asthma.[^O3risks]
Ground level ozone has been regulated by the US EPA under the National Ambient Air Quality Standards (NAAQS) since 1971. As of April 2020, the EPA's primary (health-based) standard for ground level ozone is 70 parts per billion (ppb).[^EPAO3standards] However, the EPA has acknowledged that clinical and epidemiological evidence has been inconclusive about a possible threshold for ozone-induced health effects. EPA concluded that if a population threshold level exists, it is near the lower limit of ambient ozone concentrations in the United States.[^EPAO3lowerlimit]
The analysis of ozone (O~3~) presented here is based on data from the EPA's EJSCREEN.[^EJSCREEN] EJSCREEN data provides ozone (O~3~) May–September (summer/ ozone season) average of daily-maximum 8-hour-average ozone concentrations, in parts per billion (ppb), at the Census Block Group level for the years 2011 to 2016 (as of December 2019).
Ozone (O~3~) levels vary significantly across Maine, with highest concentrations along the coast from Kittery to Bar Harbor (see Figure \@ref(fig:mapO3) below).[^NONATTAINMENT]
```{r mapO3, fig.align = "center", fig.cap="Map of 2016 Ozone summer seasonal average of daily maximum 8-hour concentration in air in parts per billion across Maine at Census Block Group level."}
# Map of O3 across Maine
m4 <- tm_shape(me_blkgrp_sf, unit = "mi") +
tm_fill("OZONE_19", style = "quantile",
title = expression(paste
(O[3]," (ppb)", sep = "")),
legend.hist = FALSE,
colorNA = NULL,
textNA = NULL,
legend.format=list(list(digits=1)),
legend.is.portrait = TRUE) +
tm_shape(ne_states_sf_cb) + tm_borders(lwd = 0.2, alpha = 0.8) +
tm_text("STUSPS", size = 0.7, remove.overlap = TRUE, col = "gray") +
tm_shape(me_highways2nd) + tm_lines(col = "seashell4", lwd = 0.5) +
tm_shape(I295roadSegment) +
tm_symbols(shape = I295, border.lwd = NA, size = 0.1) +
tm_shape(I95roadSegment) +
tm_symbols(shape = I95, border.lwd = NA, size = 0.1) +
tm_shape(I95roadSegment2) +
tm_symbols(shape = I95, border.lwd = NA, size = 0.1) +
tm_shape(me_towns_sf_pts) + tm_dots() +
tm_text("NAME", size = 0.5, col = "black",
xmod = 0.7, ymod = 0.2, shadow = TRUE) +
tm_scale_bar(breaks = c(0, 25, 50), text.size = 0.5,
position = c("right","bottom")) +
tm_layout(title = "Summer Ozone \nConcentrations\n2016",
frame = FALSE, main.title.size = 0.8,
legend.outside = TRUE,
legend.title.size = 0.8,
legend.outside.position = c("right", "top"),
legend.hist.width = 0.9)
tmap_save(m4, "DATA/EJSCREEN/me_O3.png",
height = 7, width = 8, units = "in", dpi = 600)
knitr::include_graphics("DATA/EJSCREEN/me_O3.png")
```
Ozone (O~3~) concentrations exhibit spatial clustering of both hot spots (i.e. geographic clusters of high values) and cold spots (i.e. geographic clusters of lower values). The map below (Figure \@ref(fig:hotspotO3))shows statistically significant Ozone (O~3~) hot spots.
```{r hotspotO3, fig.align = "center", fig.cap="Hot spot map of 2016 Ozone concentrations at Census Block Group level."}
# Get rid of empty geometries and NAs, and convert to spdf
empty_geo <- st_is_empty(me_blkgrp_sf)
ne_blkgrp_sp_DemoEJ <- me_blkgrp_sf[!empty_geo,] %>%
dplyr::select(GEOID,OZONE_19) %>%
# st_transform(., crs = 2163) %>% # convert to US National Atlas Equal Area
na.omit() %>%
as_Spatial()
# Calculate Queen's case neighbors
neighborsQC <- poly2nb(ne_blkgrp_sp_DemoEJ, queen = TRUE)
# Compute neighbor weights
# spdep::set.ZeroPolicyOption(TRUE)
listw <- nb2listw(neighborsQC, style = "W", zero.policy = TRUE)
# compute Getis-Ord Gi statistic
local_g <- localG(ne_blkgrp_sp_DemoEJ$OZONE_19, listw)
local_g <- cbind(ne_blkgrp_sp_DemoEJ, as.matrix(local_g))
names(local_g)[3] <- "gstat"
# map the results
m5 <- tm_shape(local_g, unit = "mi",) +
tm_fill("gstat",
palette = "-RdBu",
style = "pretty",
title = expression(paste("Getis-Ord ", G[i]^"*")),
showNA = FALSE,
midpoint = NA,
labels = c("Significant Clusters","of Low Values", "","","","", "Significant Clusters","of High Values"),
legend.show = FALSE) +
tm_shape(ne_states_sf_cb) + tm_borders(lwd = 0.2, alpha = 0.8) +
tm_text("STUSPS", size = 0.7, remove.overlap = TRUE, col = "gray") +
tm_shape(me_highways2nd) + tm_lines(col = "seashell4", lwd = 0.5) +
tm_shape(I295roadSegment) +
tm_symbols(shape = I295, border.lwd = NA, size = 0.1) +
tm_shape(I95roadSegment) +
tm_symbols(shape = I95, border.lwd = NA, size = 0.1) +
tm_shape(I95roadSegment2) +
tm_symbols(shape = I95, border.lwd = NA, size = 0.1) +
tm_shape(me_towns_sf_pts) + tm_dots() +
tm_text("NAME", size = 0.5, col = "black",
xmod = 0.7, ymod = 0.2, shadow = TRUE) +
tm_scale_bar(breaks = c(0, 25, 50), text.size = 0.5,
position = c("right","bottom")) +
tm_add_legend(type = "fill",
title = "Getis-Ord Hot Spot\nClassification",
labels = c("Significant Clusters","of High Values", "","No Significant Clusters", "","Significant Clusters","of Low Values"),
col = c("#B2182B","#EF8A62","#FDDBC7","#F7F7F7",
"#D1E5F0","#67A9CF","#2166AC"),
border.col = "white", border.alpha = 0) +
tm_layout(title = "Hot Spot Map \nof Ozone for \nMaine",
frame = FALSE, main.title.size = 0.8,
legend.outside = TRUE,
legend.title.size = 0.8,
legend.outside.position = c("right", "top"))
tmap_save(m5, "DATA/EJSCREEN/me_O3hotspot.png",
height = 7, width = 8, units = "in", dpi = 600)
knitr::include_graphics("DATA/EJSCREEN/me_O3hotspot.png")
```
There are statistically significant hot spots of Ozone (O~3~) around Kittery, Brunswick, Rockbland, and Bar Harbor.
These ozone levels vary significantly across the state (see Table \@ref(tab:statsO3) and Figure \@ref(fig:boxplotO3)). See Table \@ref(tab:PollutantByTown) in Appendix B for concentrations by municipality.
```{r statsO3, echo=FALSE, message=FALSE, warning=FALSE, fig.align = "center", fig.cap="Annual ozone concentrations at Census Block Group level for the state."}
me_blkgrp_sf %>%
as.data.frame() %>%
# group_by(STATE) %>%
summarize(Mean = round(mean(OZONE_19, na.rm = TRUE),2),
Median = round(median(OZONE_19, na.rm = TRUE),2),
Min = round(min(OZONE_19, na.rm = TRUE),2),
Max = round(max(OZONE_19, na.rm = TRUE),2)) %>%
kableExtra::kable(longtable = T, booktabs = T,
format.args = list(big.mark = ','),
caption = "Annual 2016 PM2.5 concentrations (micrograms per cubic meter) by Census block group for the state.", align = "r") %>%
kableExtra::kable_styling(latex_options = c("repeat_header"))
```
```{r O3outliers, include=FALSE}
# # download municipal polygons
# me_towns_sf <- county_subdivisions("ME") %>%
# select(NAME) %>%
# st_transform(., crs = st_crs(me_blkgrp_sf))
# extract block groups centroid with highest and lowest values, intersect with town polygons, and pull out town name
me_town_max <- me_blkgrp_sf %>%
filter(OZONE_19 == max(OZONE_19,na.rm = TRUE)) %>%
st_centroid() %>%
st_intersection(me_towns_sf,.) %>%
slice(.,1) %>%
pull(., NAME)
me_town_min <- me_blkgrp_sf %>%
filter(OZONE_19 == min(OZONE_19,na.rm = TRUE)) %>%
st_centroid() %>%
st_intersection(me_towns_sf,.) %>%
slice(.,1) %>%
pull(., NAME)
# identify threshold for outliers using IQR method
Outlier <- quantile(me_blkgrp_sf$OZONE_19,.75, na.rm = TRUE) + 1.5*(quantile(me_blkgrp_sf$OZONE_19,.75, na.rm = TRUE) - quantile(me_blkgrp_sf$OZONE_19,.25, na.rm = TRUE))
# identify outliers
me_town_outlier <- me_blkgrp_sf %>%
filter(OZONE_19 > Outlier) %>%
st_centroid() %>%
st_intersection(me_towns_sf,.) %>%
# filter(row_number() == 1) %>%
as.data.frame() %>%
distinct(NAME) %>%
arrange(NAME) %>%
pull(., NAME)
```
The Block Group with highest O~3~ concentration value in the state is found in `r me_town_max` and the lowest is found in `r me_town_min`. See Table \@ref(tab:PollutantByTown) in Appendix B for concentrations by municipality.
Figure \@ref(fig:boxplotO3) is a boxplot of O~3~ concentrations by Block Group . The box represents concentration values ranging between the 25th and 75th percentiles. The line that divides the box into two parts represents the median O~3~ concentration for all Block Groups, which in this case is `r round(median(me_blkgrp_sf$OZONE_19, na.rm = TRUE),2)`. Half of the state's Block Groups are below the median and half are above the median. Each dot represents an individual Block Group. Large black dots represent outliers, or Block Groups with values that are unusually high or low relative to the state. In this case, outliers would be represented by ozone values greater than `r Outlier`, which occur in `r glue::glue_collapse(me_town_outlier,", ", last = ", and ")`.
```{r boxplotO3, fig.align = "center", fig.cap="Boxplot of 2016 Ozone summer seasonal average of daily maximum 8-hour concentrations in air in parts per billion by state at Census Block Group level. 1 dot = 1 Block Group."}
# boxplot of PM2.5 by state for 2016
me_blkgrp_sf %>%
as.data.frame() %>%
ggplot(aes(x = STATE, y = OZONE_19, fill = STATE)) +
geom_boxplot() +
geom_jitter(color = "black", size = 0.4, alpha = 0.6) +
ggtitle(expression(atop(paste("Ozone (", O[3], ") Summer Concentration"), "2016"))) +
theme_minimal() +
theme(legend.position = "none", axis.text=element_text(size=8)) +
xlab(NULL) +
ylab(expression(paste(O[3]," (ppb)", sep = ""))) +
coord_flip()
```
Since 2011, Ozone (O~3~) levels have decreased slightly across the state, on average by `r {round(mean(me_blkgrp_sf$OZONE_pctChange, na.rm = TRUE),1)}`%. These have changes not been uniform (see Figure \@ref(fig:mapO3change) below). The greatest declines, up to `r round(min(me_blkgrp_sf$OZONE_pctChange, na.rm = TRUE),1)`%, have been in the north central part of the state. By contrast, increases in summer ozone concentrations of up to `r round(max(me_blkgrp_sf$OZONE_pctChange, na.rm = TRUE),1)`% appear south of Bethel and also around Bangor.
```{r mapO3change, fig.align = "center", fig.cap="Map of percent change in summer seasonal Ozone concentrations across Maine between 2011 and 2016 at Census Block Group level."}
# Map of O3 change across Maine
m6 <- tm_shape(me_blkgrp_sf, unit = "mi") +
tm_fill("OZONE_pctChange", palette = "-RdYlGn",
style = "pretty",
title = "% Change",
legend.hist = FALSE,
colorNA = NULL,
textNA = NULL,
legend.format=list(list(digits=1)),
legend.is.portrait = TRUE,
midpoint = 0) +
tm_shape(ne_states_sf_cb) + tm_borders(lwd = 0.2, alpha = 0.8) +
tm_text("STUSPS", size = 0.7, remove.overlap = TRUE, col = "gray") +
tm_shape(me_highways2nd) + tm_lines(col = "seashell4", lwd = 0.5) +
tm_shape(I295roadSegment) +
tm_symbols(shape = I295, border.lwd = NA, size = 0.1) +
tm_shape(I95roadSegment) +
tm_symbols(shape = I95, border.lwd = NA, size = 0.1) +
tm_shape(I95roadSegment2) +
tm_symbols(shape = I95, border.lwd = NA, size = 0.1) +
tm_shape(me_towns_sf_pts) + tm_dots() +
tm_text("NAME", size = 0.5, col = "black",
xmod = 0.7, ymod = 0.2, shadow = TRUE) +
tm_scale_bar(breaks = c(0, 25, 50), text.size = 0.5,
position = c("right","bottom")) +
tm_layout(title = "Change in summer\nOzone Concentrations \n2011-2016",
frame = FALSE, main.title.size = 0.8,
legend.outside = TRUE,
legend.title.size = 0.8,
legend.outside.position = c("right", "top"),
legend.hist.width = 0.9)
tmap_save(m6, "DATA/EJSCREEN/me_O3change.png",
height = 7, width = 8, units = "in", dpi = 600)
knitr::include_graphics("DATA/EJSCREEN/me_O3change.png")
```
Figure \@ref(fig:slopegraphO3) below compares the average summer Ozone (O~3~) concentrations for the state and for the region between 2011 and 2016. Maine's average concentrations have decreased and remain lower than the region.
```{r slopegraphO3, fig.align = "center", fig.cap="Change in summer average ozone concentrations between 2011 and 2016 for Maine and New England."}
# Slope graph of O3 by state and region between 2011 and 2016
# Create df of 2019 actual values
O319wSTAvgs_actual <- me_blkgrp_sf %>%
as.data.frame() %>%
group_by(STATE) %>%
summarize(O3Mean = mean(OZONE_19, na.rm = TRUE),
O3wMean = weighted.mean(x = OZONE_19,
w = totalpopE, na.rm = TRUE)) %>%
mutate(Year = 2016)
# Create df of 2015 values
O315wSTAvgs_actual <- me_blkgrp_sf %>%
as.data.frame() %>%
group_by(STATE) %>%
summarize(O3Mean = mean(o3_15, na.rm = TRUE),
O3wMean = weighted.mean(x = o3_15,
w = pop_15, na.rm = TRUE)) %>%
mutate(Year = 2011)
# Create regional average benchmark
O315NEavg <- ne_blkgrp_sf %>%
as.data.frame() %>%
summarize(O3Mean = mean(o3_15, na.rm = TRUE),
O3wMean = weighted.mean(x = o3_15,
w = pop_15, na.rm = TRUE)) %>%
transmute(STATE = "NEW ENGLAND",
O3Mean = O3Mean,
O3wMean = O3wMean,
Year = 2011)
O319NEavg <- ne_blkgrp_sf %>%
as.data.frame() %>%
summarize(O3Mean = mean(OZONE_19, na.rm = TRUE),
O3wMean = weighted.mean(x = OZONE_19,
w = totalpopE, na.rm = TRUE)) %>%
transmute(STATE = "NEW ENGLAND",
O3Mean = O3Mean,
O3wMean = O3wMean,
Year = 2016)
#rbind tables
O311_16wSTAvg_actual <- bind_rows(O315wSTAvgs_actual,
O319wSTAvgs_actual,
O315NEavg,
O319NEavg) %>%
mutate(Year = as.factor(Year),
O3Mean = round(O3wMean,2),
O3wMean = round(O3wMean,2))
# make slope graph
newggslopegraph(dataframe = O311_16wSTAvg_actual,
Times = Year,
Measurement = O3Mean,
Grouping = STATE,
Title = expression(paste("Summer Average Ozone (", O[3], ") Concentrations")),
SubTitle = expression(paste
(O[3]," (ppb)", sep = "")),
Caption = NULL,
LineColor = c("NEW ENGLAND" = "#000000",
"Maine" = "#E69F00",
"Massachusetts" = "#56B4E9",
"Maine" = "#009E73",
"Maine" = "#F0E442",
"Maine" = "#0072B2",
"Maine" = "#D55E00"),
LineThickness = 1,
YTextSize = 3.5,
DataTextSize = 3,
WiderLabels = TRUE)
```
### Ozone (O~3~) in Maine and Priority Populations
In addition to variations in the general geography of Ozone (O~3~) concentrations, exposure to this pollutant also varies demographically. Figure \@ref(fig:barplotO3PopAvg) below shows population-weighted exposures for priority populations relative to average Ozone concentrations for the region. For example, persons over age 64 in Maine are exposed to summer Ozone concentrations that are approximately 0.5% above concentrations for the state as a whole. By contrast, adults without a high school diploma are, on average, exposed to concentrations of Ozone almost 1% below the state average.
```{r barplotO3PopAvg, fig.align = "center", fig.cap="Population-weighted average exposures to Ozone for priority populations in Maine relative to the state average."}
# Pop Weighted avg of O3 for all Groups in Maine relative to NE average
me_blkgrp_sf %>%
as.data.frame() %>%
dplyr::select(totalpopE,
nhwhitepopE,
minorityE,
nhblackpopE,
nhamerindpopE,
nhasianpopE,
nhnativhpopE,
nhotherpopE,
nh2morepopE,
hisppopE,
povknownE,
num2povE,
eng_hhE,
eng_limitE,
age25upE,
lthsE,
allAgesE,
under5E,
over64E,
OZONE_19) %>%
gather(key = Group, value = Pop, totalpopE:over64E) %>%
group_by(Group) %>%
summarize(O3wMean = weighted.mean(x = OZONE_19, w = Pop, na.rm = TRUE),
O3Mean = mean(OZONE_19, na.rm = TRUE)) %>%
spread(key = Group, value = O3wMean) %>%
transmute(`People of Color` = (minorityE/O3Mean - 1)*100,
#Minority_MEW = (minorityE/nhwhitepopE - 1)*100,
`Limited English HH` = (eng_limitE/O3Mean - 1)*100,
`Low Income` = (num2povE/O3Mean - 1)*100,
`No HS Diploma` = (lthsE/O3Mean - 1)*100,
`Under 5` = (under5E/O3Mean - 1)*100,
`Over 64` = (over64E/O3Mean - 1)*100) %>%
gather(key = Group, value = Pct) %>%
ggplot(aes(x = reorder(Group,Pct),
y = Pct)) +
geom_segment(aes(x = reorder(Group,Pct),
xend = reorder(Group,Pct),
y = 0, yend = Pct),
color = "skyblue") +
geom_point(color = "blue", size = 4, alpha = 0.8) +
coord_flip() +
labs(x = "", y = "", title = expression(atop(paste("Population-Weighted Ozone (", O[3], ") Exposure"), "(relative to Maine average)"))) +
theme_light() +
theme(panel.grid.major.y = element_blank(),
panel.border = element_blank(),
axis.ticks.y = element_blank()) +
geom_text(aes(x = Group, y = Pct + 0.2 * sign(Pct),
label = paste0(round(Pct,2),"%")),
hjust = .5, vjust = -.8, size = 3,
color=rgb(100,100,100, maxColorValue=255)) +
scale_y_continuous(labels = function(x) paste0(x, "%")) +
geom_hline(yintercept = 0, linetype = "dashed") +
geom_text(aes(x = "People of Color", y = 1.2, label = "Above state\naverage"),
color = "gray48") +
geom_text(aes(x = "People of Color", y = -0.5, label = "Below state\naverage"),
color = "gray48") +
# geom_segment(aes(x = "Under 5", xend = "Under 5", y = 0.5, yend = 1),
# arrow = arrow(length = unit(0.3,"cm"))) +
expand_limits(y = c(-1.5,1.5))
# save graph to image
ggsave("images/ME_O3_graph.png")
```
Like the state as a whole, all populations have experienced declines in exposure since 2011. The comparison between exposure for these groups since 2011 is displayed below in Figure \@ref(fig:slopegraphO3PopAvg).
```{r slopegraphO3PopAvg, fig.align = "center", fig.cap="Change in population-weighted exposure to summer ozone for priority populations between 2011 and 2016."}
# Pop Weighted avg of O3 EXPOSURE CHANGE 2011 - 2016 for all Groups in Maine relative to NE average.
# Create df of 2019 actual values
O319wAvgs_actual <- me_blkgrp_sf %>%
as.data.frame() %>%
# filter(STATE == "Massachusetts") %>%
dplyr::select(minorityE,
num2povE,
eng_limitE,
lthsE,
under5E,
over64E,
OZONE_19) %>%
gather(key = Group, value = Pop, minorityE:over64E) %>%
group_by(Group) %>%
summarize(O3wMean = weighted.mean(x = OZONE_19,
w = Pop, na.rm = TRUE)) %>%
mutate(Group = case_when(
Group == "minorityE" ~ "People of Color",
Group == "eng_limitE" ~ "Limited English HH",
Group == "num2povE" ~ "Low Income",
Group == "lthsE" ~ "No HS Diploma",
Group == "under5E" ~ "Under 5",
Group == "over64E" ~ "Over 64")) %>%
mutate(Year = 2016)
# Create df of 2015 values
O315wAvgs_actual <- me_blkgrp_sf %>%
as.data.frame() %>%
# filter(STATE == "Massachusetts") %>%
dplyr::select(mins_15,
lowinc_15,
lingiso_15,
lths_15,
under5_15,
over64_15,
o3_15) %>%
gather(key = Group, value = Pop, mins_15:over64_15) %>%
group_by(Group) %>%
summarize(O3wMean = weighted.mean(x = o3_15,
w = Pop, na.rm = TRUE)) %>%
mutate(Group = case_when(
Group == "mins_15" ~ "People of Color",
Group == "lingiso_15" ~ "Limited English HH",
Group == "lowinc_15" ~ "Low Income",
Group == "lths_15" ~ "No HS Diploma",
Group == "under5_15" ~ "Under 5",
Group == "over64_15" ~ "Over 64")) %>%
mutate(Year = 2011)
# Create regional average benchmark
O315MEavg <- mean(me_blkgrp_sf$o3_15, na.rm = TRUE)
O319MEavg <- mean(me_blkgrp_sf$OZONE_19, na.rm = TRUE)
O3RegionalAvg_actual <- data.frame(
Group = c("STATE AVG", "STATE AVG"),
O3wMean = c(O315MEavg,O319MEavg),
Year = c(2011,2016)
)
#rbind tables
O311_16wAvg_actual <- bind_rows(O315wAvgs_actual,
O319wAvgs_actual,
O3RegionalAvg_actual) %>%
mutate(Year = as.factor(Year),
O3wMean = round(O3wMean,2))
# make slope graph
newggslopegraph(dataframe = O311_16wAvg_actual,
Times = Year,
Measurement = O3wMean,
Grouping = Group,
Title = "Population-Weighted Ozone Exposure",
SubTitle = expression(paste
(O[3]," (ppb)", sep = "")),
Caption = NULL,
LineColor = c("STATE AVG" = "#000000",
"Limited English HH" = "#E69F00",
"People of Color" = "#56B4E9",
"No HS Diploma" = "#009E73",
"Low Income" = "#F0E442",
"Under 5" = "#0072B2",
"Over 64" = "#D55E00"),
YTextSize = 3.5,
DataTextSize = 3,
WiderLabels = TRUE)
# savegraph to image
ggsave("images/ME_O3_slope.png")
```
\pagebreak
## Carbon Dioxide (CO~2~) in Maine