forked from sercant/mobile-segmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
evaluate.py
168 lines (127 loc) · 6.22 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
"""Evaluation script for the DeepLab model.
See model.py for more details and usage.
"""
import math
import six
import tensorflow as tf
from tensorflow.contrib import slim
import common
import model
from dataset import segmentation_dataset
from utils import input_generator
flags = tf.app.flags
FLAGS = flags.FLAGS
flags.DEFINE_string('master', '', 'BNS name of the tensorflow server')
# Settings for log directories.
flags.DEFINE_string('eval_logdir', None, 'Where to write the event logs.')
flags.DEFINE_string('checkpoint_dir', None, 'Directory of model checkpoints.')
# Settings for evaluating the model.
flags.DEFINE_integer('eval_batch_size', 1,
'The number of images in each batch during evaluation.')
flags.DEFINE_multi_integer('eval_crop_size', [769, 769],
'Image crop size [height, width] for evaluation.')
flags.DEFINE_integer('eval_interval_secs', 60 * 5,
'How often (in seconds) to run evaluation.')
# For `mobilenet_v2` and `shufflenet_v2`, use None.
flags.DEFINE_multi_integer('atrous_rates', None,
'Atrous rates for atrous spatial pyramid pooling.')
flags.DEFINE_integer('output_stride', 16,
'The ratio of input to output spatial resolution.')
# Change to [0.5, 0.75, 1.0, 1.25, 1.5, 1.75] for multi-scale test.
flags.DEFINE_multi_float('eval_scales', [1.0],
'The scales to resize images for evaluation.')
# Change to True for adding flipped images during test.
flags.DEFINE_bool('add_flipped_images', False,
'Add flipped images for evaluation or not.')
# Dataset settings.
flags.DEFINE_string('dataset', 'cityscapes',
'Name of the segmentation dataset.')
flags.DEFINE_string('eval_split', 'val',
'Which split of the dataset used for evaluation')
flags.DEFINE_string('dataset_dir', None, 'Where the dataset reside.')
flags.DEFINE_integer('max_number_of_evaluations', 0,
'Maximum number of eval iterations. Will loop '
'indefinitely upon nonpositive values.')
def main(unused_argv):
tf.logging.set_verbosity(tf.logging.INFO)
# Get dataset-dependent information.
dataset = segmentation_dataset.get_dataset(
FLAGS.dataset, FLAGS.eval_split, dataset_dir=FLAGS.dataset_dir)
tf.gfile.MakeDirs(FLAGS.eval_logdir)
tf.logging.info('Evaluating on %s set', FLAGS.eval_split)
with tf.Graph().as_default():
samples = input_generator.get(
dataset,
FLAGS.eval_crop_size,
FLAGS.eval_batch_size,
min_resize_value=FLAGS.min_resize_value,
max_resize_value=FLAGS.max_resize_value,
resize_factor=FLAGS.resize_factor,
dataset_split=FLAGS.eval_split,
is_training=False,
model_variant=FLAGS.model_variant)
model_options = common.ModelOptions(
outputs_to_num_classes={common.OUTPUT_TYPE: dataset.num_classes},
crop_size=FLAGS.eval_crop_size,
atrous_rates=FLAGS.atrous_rates,
output_stride=FLAGS.output_stride)
if tuple(FLAGS.eval_scales) == (1.0,):
tf.logging.info('Performing single-scale test.')
predictions = model.predict_labels(samples[common.IMAGE], model_options,
image_pyramid=FLAGS.image_pyramid)
else:
tf.logging.info('Performing multi-scale test.')
predictions = model.predict_labels_multi_scale(
samples[common.IMAGE],
model_options=model_options,
eval_scales=FLAGS.eval_scales,
add_flipped_images=FLAGS.add_flipped_images)
predictions = predictions[common.OUTPUT_TYPE]
predictions = tf.reshape(predictions, shape=[-1])
labels = tf.reshape(samples[common.LABEL], shape=[-1])
weights = tf.cast(tf.not_equal(labels, dataset.ignore_label), tf.float32)
# Set ignore_label regions to label 0, because metrics.mean_iou requires
# range of labels = [0, dataset.num_classes). Note the ignore_label regions
# are not evaluated since the corresponding regions contain weights = 0.
labels = tf.where(
tf.equal(labels, dataset.ignore_label), tf.zeros_like(labels), labels)
predictions_tag = 'miou'
for eval_scale in FLAGS.eval_scales:
predictions_tag += '_' + str(eval_scale)
if FLAGS.add_flipped_images:
predictions_tag += '_flipped'
# Define the evaluation metric.
metric_map = {}
metric_map[predictions_tag] = tf.metrics.mean_iou(
predictions, labels, dataset.num_classes, weights=weights)
metrics_to_values, metrics_to_updates = (
tf.contrib.metrics.aggregate_metric_map(metric_map))
for metric_name, metric_value in six.iteritems(metrics_to_values):
slim.summaries.add_scalar_summary(
metric_value, metric_name, print_summary=True)
num_batches = int(
math.ceil(dataset.num_samples / float(FLAGS.eval_batch_size)))
tf.logging.info('Eval num images %d', dataset.num_samples)
tf.logging.info('Eval batch size %d and num batch %d',
FLAGS.eval_batch_size, num_batches)
num_eval_iters = None
if FLAGS.max_number_of_evaluations > 0:
num_eval_iters = FLAGS.max_number_of_evaluations
# Soft placement allows placing on CPU ops without GPU implementation.
session_config = tf.ConfigProto(
allow_soft_placement=True, log_device_placement=False)
session_config.gpu_options.allow_growth = True
slim.evaluation.evaluation_loop(
session_config=session_config,
master=FLAGS.master,
checkpoint_dir=FLAGS.checkpoint_dir,
logdir=FLAGS.eval_logdir,
num_evals=num_batches,
eval_op=list(metrics_to_updates.values()),
max_number_of_evaluations=num_eval_iters,
eval_interval_secs=FLAGS.eval_interval_secs)
if __name__ == '__main__':
flags.mark_flag_as_required('checkpoint_dir')
flags.mark_flag_as_required('eval_logdir')
flags.mark_flag_as_required('dataset_dir')
tf.app.run()