-
Notifications
You must be signed in to change notification settings - Fork 256
/
hyperparameter.py
433 lines (318 loc) · 18.5 KB
/
hyperparameter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
import os
import argparse
import time
import itertools
import torch
from torch.autograd import Variable
import numpy as np
from utils import DataLoader
from helper import get_mean_error, get_final_error
from helper import *
from grid import getSequenceGridMask
class parameters():
def __init__(self, args):
args = args.parse_args()
self.input_size = args.input_size
self.output_size = args.output_size
self.maxNumPeds = args.maxNumPeds
self.seq_length = args.seq_length
self.num_samples = args.num_samples
self.num_epochs = args.num_epochs
self.use_cuda = args.use_cuda
self.drive = args.drive
self.num_validation = args.num_validation
self.gru = args.gru
self.method = args.method
self.best_n = args.best_n
self.batch_size = args.batch_size
def sample_hyperparameters():
"""
Yield possible hyperparameter choices.
"""
while True:
yield {
"rnn_size": np.random.choice([64, 128, 256]).item(),
"learning_schedule": np.random.choice(["RMSprop", "adagrad", "adam"]).item(),
"grad_clip": np.random.uniform(7, 12),
"learning_rate": np.random.uniform(0.001, 0.01),
"decay_rate": np.random.uniform(0.7,1),
"lambda_param" : np.random.uniform(0.0001,0.001),
"dropout": np.random.uniform(0.3,1),
"embedding_size": np.random.choice([64, 128, 256]).item(),
"neighborhood_size": np.random.choice([8, 16, 32, 64]).item(),
"grid_size": np.random.choice([2, 4, 8, 16]).item(),
}
def write_to_file(file, args):
file.write("rnn_size: "+str(args.rnn_size)+" learning_schedule: "+str(args.learning_schedule)+" grad_clip: "+str(args.grad_clip)+" learning_rate: "+str(args.learning_rate)+
#"decay_rate: "+str(args.decay_rate)+
" dropout: "+str(args.dropout)+" embedding_size: "+str(args.embedding_size)+" neighborhood_size: "+str(args.neighborhood_size)+" grid_size: "+str(args.grid_size)+'\n')
def print_to_screen(args):
print("rnn_size: "+str(args.rnn_size)," learning_schedule: ",str(args.learning_schedule)," grad_clip: ",str(args.grad_clip)," learning_rate: ",str(args.learning_rate),
#"decay_rate: ",str(args.decay_rate),
" dropout: ",str(args.dropout)," embedding_size: ",str(args.embedding_size)," neighborhood_size: ",str(args.neighborhood_size)," grid_size: ",str(args.grid_size))
def main():
parser = argparse.ArgumentParser()
# Model to be loaded
# RNN size parameter (dimension of the output/hidden state)
parser.add_argument('--input_size', type=int, default=2)
parser.add_argument('--output_size', type=int, default=5)
parser.add_argument('--seq_length', type=int, default=20,
help='RNN sequence length')
# Size of each batch parameter
parser.add_argument('--batch_size', type=int, default=10,
help='minibatch size')
parser.add_argument('--num_samples', type=int, default=500,
help='NUmber of random configuration will be tested')
parser.add_argument('--num_epochs', type=int, default=3,
help='number of epochs')
# Maximum number of pedestrians to be considered
parser.add_argument('--maxNumPeds', type=int, default=27,
help='Maximum Number of Pedestrians')
# cuda support
parser.add_argument('--use_cuda', action="store_true", default=False,
help='Use GPU or not')
# drive support
parser.add_argument('--drive', action="store_true", default=False,
help='Use Google drive or not')
# number of validation dataset will be used
parser.add_argument('--num_validation', type=int, default=1,
help='Total number of validation dataset will be visualized')
# gru model
parser.add_argument('--gru', action="store_true", default=False,
help='True : GRU cell, False: LSTM cell')
# method selection for hyperparameter
parser.add_argument('--method', type=int, default=1,
help='Method of lstm will be used (1 = social lstm, 2 = obstacle lstm, 3 = vanilla lstm)')
# number of parameter set will be logged
parser.add_argument('--best_n', type=int, default=100,
help='Number of best n configuration will be logged')
# Parse the parameters
#sample_args = parser.parse_args()
args = parameters(parser)
args.best_n = np.clip(args.best_n, 0, args.num_samples)
#for drive run
prefix = ''
f_prefix = '.'
if args.drive is True:
prefix='drive/semester_project/social_lstm_final/'
f_prefix = 'drive/semester_project/social_lstm_final'
method_name = get_method_name(args.method)
model_name = "LSTM"
save_tar_name = method_name+"_lstm_model_"
if args.gru:
model_name = "GRU"
save_tar_name = method_name+"_gru_model_"
#plot directory for plotting in the future
param_log = os.path.join(f_prefix)
param_log_file = "hyperparameter"
origin = (0,0)
reference_point = (0,1)
score = []
param_set = []
# Create the DataLoader object
create_directories(param_log, [param_log_file])
log_file = open(os.path.join(param_log, param_log_file, 'log.txt'), 'w+')
dataloader_t = DataLoader(f_prefix, args.batch_size, args.seq_length, num_of_validation = args.num_validation, forcePreProcess = True, infer = True)
dataloader_v = DataLoader(f_prefix, 1, args.seq_length, num_of_validation = args.num_validation, forcePreProcess = True, infer = True)
for hyperparams in itertools.islice(sample_hyperparameters(), args.num_samples):
args = parameters(parser)
# randomly sample a parameter set
args.rnn_size = hyperparams.pop("rnn_size")
args.learning_schedule = hyperparams.pop("learning_schedule")
args.grad_clip = hyperparams.pop("grad_clip")
args.learning_rate = hyperparams.pop("learning_rate")
args.lambda_param = hyperparams.pop("lambda_param")
args.dropout = hyperparams.pop("dropout")
args.embedding_size = hyperparams.pop("embedding_size")
args.neighborhood_size = hyperparams.pop("neighborhood_size")
args.grid_size = hyperparams.pop("grid_size")
log_file.write("##########Parameters########"+'\n')
print("##########Parameters########")
write_to_file(log_file, args)
print_to_screen(args)
net = get_model(args.method, args)
if args.use_cuda:
net = net.cuda()
if(args.learning_schedule == "RMSprop"):
optimizer = torch.optim.RMSprop(net.parameters(), lr=args.learning_rate)
elif(args.learning_schedule == "adagrad"):
optimizer = torch.optim.Adagrad(net.parameters(), weight_decay=args.lambda_param)
else:
optimizer = torch.optim.Adam(net.parameters(), weight_decay=args.lambda_param)
learning_rate = args.learning_rate
total_process_start = time.time()
# Training
for epoch in range(args.num_epochs):
print('****************Training epoch beginning******************')
dataloader_t.reset_batch_pointer()
loss_epoch = 0
# For each batch
for batch in range(dataloader_t.num_batches):
start = time.time()
# Get batch data
x, y, d , numPedsList, PedsList ,target_ids = dataloader_t.next_batch()
loss_batch = 0
# For each sequence
for sequence in range(dataloader_t.batch_size):
# Get the data corresponding to the current sequence
x_seq ,_ , d_seq, numPedsList_seq, PedsList_seq = x[sequence], y[sequence], d[sequence], numPedsList[sequence], PedsList[sequence]
target_id = target_ids[sequence]
#get processing file name and then get dimensions of file
folder_name = dataloader_t.get_directory_name_with_pointer(d_seq)
dataset_data = dataloader_t.get_dataset_dimension(folder_name)
#dense vector creation
x_seq, lookup_seq = dataloader_t.convert_proper_array(x_seq, numPedsList_seq, PedsList_seq)
target_id_values = x_seq[0][lookup_seq[target_id], 0:2]
#grid mask calculation
if args.method == 2: #obstacle lstm
grid_seq = getSequenceGridMask(x_seq, dataset_data, PedsList_seq, args.neighborhood_size, args.grid_size, args.use_cuda, True)
elif args.method == 1: #social lstm
grid_seq = getSequenceGridMask(x_seq, dataset_data, PedsList_seq, args.neighborhood_size, args.grid_size, args.use_cuda)
# vectorize trajectories in sequence
x_seq, _ = vectorize_seq(x_seq, PedsList_seq, lookup_seq)
if args.use_cuda:
x_seq = x_seq.cuda()
#number of peds in this sequence per frame
numNodes = len(lookup_seq)
hidden_states = Variable(torch.zeros(numNodes, args.rnn_size))
if args.use_cuda:
hidden_states = hidden_states.cuda()
cell_states = Variable(torch.zeros(numNodes, args.rnn_size))
if args.use_cuda:
cell_states = cell_states.cuda()
# Zero out gradients
net.zero_grad()
optimizer.zero_grad()
# Forward prop
if args.method == 3: #vanilla lstm
outputs, _, _ = net(x_seq, hidden_states, cell_states, PedsList_seq,numPedsList_seq ,dataloader_t, lookup_seq)
else:
outputs, _, _ = net(x_seq, grid_seq, hidden_states, cell_states, PedsList_seq,numPedsList_seq ,dataloader_t, lookup_seq)
# Compute loss
loss = Gaussian2DLikelihood(outputs, x_seq, PedsList_seq, lookup_seq)
loss_batch += loss.item()
# Compute gradients
loss.backward()
# Clip gradients
torch.nn.utils.clip_grad_norm_(net.parameters(), args.grad_clip)
# Update parameters
optimizer.step()
end = time.time()
loss_batch = loss_batch / dataloader_t.batch_size
loss_epoch += loss_batch
print('{}/{} (epoch {}), train_loss = {:.3f}, time/batch = {:.3f}'.format(epoch * dataloader_t.num_batches + batch,
args.num_epochs * dataloader_t.num_batches,
epoch,
loss_batch, end - start))
loss_epoch /= dataloader_t.num_batches
# Log loss values
log_file.write("Training epoch: "+str(epoch)+" loss: "+str(loss_epoch)+'\n')
net = get_model(args.method, args, True)
if args.use_cuda:
net = net.cuda()
if(args.learning_schedule == "RMSprop"):
optimizer = torch.optim.RMSprop(net.parameters(), lr=args.learning_rate)
elif(args.learning_schedule == "adagrad"):
optimizer = torch.optim.Adagrad(net.parameters(), weight_decay=args.lambda_param)
else:
optimizer = torch.optim.Adam(net.parameters(), weight_decay=args.lambda_param)
print('****************Validation dataset batch processing******************')
dataloader_v.reset_batch_pointer()
dataset_pointer_ins = dataloader_v.dataset_pointer
loss_epoch = 0
err_epoch = 0
f_err_epoch = 0
num_of_batch = 0
smallest_err = 100000
# For each batch
for batch in range(dataloader_v.num_batches):
start = time.time()
# Get batch data
x, y, d , numPedsList, PedsList ,target_ids = dataloader_v.next_batch()
if dataset_pointer_ins is not dataloader_v.dataset_pointer:
if dataloader_v.dataset_pointer is not 0:
print('Finished prosessed file : ', dataloader_v.get_file_name(-1),' Avarage error : ', err_epoch/num_of_batch)
num_of_batch = 0
dataset_pointer_ins = dataloader_v.dataset_pointer
# Loss for this batch
loss_batch = 0
err_batch = 0
f_err_batch = 0
# For each sequence
for sequence in range(dataloader_v.batch_size):
# Get data corresponding to the current sequence
x_seq ,_ , d_seq, numPedsList_seq, PedsList_seq = x[sequence], y[sequence], d[sequence], numPedsList[sequence], PedsList[sequence]
target_id = target_ids[sequence]
folder_name = dataloader_v.get_directory_name_with_pointer(d_seq)
dataset_data = dataloader_v.get_dataset_dimension(folder_name)
#dense vector creation
x_seq, lookup_seq = dataloader_v.convert_proper_array(x_seq, numPedsList_seq, PedsList_seq)
#will be used for error calculation
orig_x_seq = x_seq.clone()
target_id_values = x_seq[0][lookup_seq[target_id], 0:2]
#grid mask calculation
if args.method == 2: #obstacle lstm
grid_seq = getSequenceGridMask(x_seq, dataset_data, PedsList_seq, args.neighborhood_size, args.grid_size, args.use_cuda, True)
elif args.method == 1: #social lstm
grid_seq = getSequenceGridMask(x_seq, dataset_data, PedsList_seq, args.neighborhood_size, args.grid_size, args.use_cuda)
# vectorize trajectories in sequence
x_seq, first_values_dict = vectorize_seq(x_seq, PedsList_seq, lookup_seq)
# <--------------Experimental block --------------->
# Construct variables
# x_seq, lookup_seq = dataloader_v.convert_proper_array(x_seq, numPedsList_seq, PedsList_seq)
# x_seq, target_id_values, first_values_dict = vectorize_seq_with_ped(x_seq, PedsList_seq, lookup_seq ,target_id)
# angle = angle_between(reference_point, (x_seq[1][lookup_seq[target_id], 0].data.numpy(), x_seq[1][lookup_seq[target_id], 1].data.numpy()))
# x_seq = rotate_traj_with_target_ped(x_seq, angle, PedsList_seq, lookup_seq)
if args.use_cuda:
x_seq = x_seq.cuda()
if args.method == 3: #vanilla lstm
ret_x_seq, loss = sample_validation_data_vanilla(x_seq, PedsList_seq, args, net, lookup_seq, numPedsList_seq, dataloader_v)
else:
ret_x_seq, loss = sample_validation_data(x_seq, PedsList_seq, grid_seq, args, net, lookup_seq, numPedsList_seq, dataloader_v)
#revert the points back to original space
ret_x_seq = revert_seq(ret_x_seq, PedsList_seq, lookup_seq, first_values_dict)
err = get_mean_error(ret_x_seq.data, orig_x_seq.data, PedsList_seq, PedsList_seq, args.use_cuda, lookup_seq)
f_err = get_final_error(ret_x_seq.data, orig_x_seq.data, PedsList_seq, PedsList_seq, lookup_seq)
# ret_x_seq = rotate_traj_with_target_ped(ret_x_seq, -angle, PedsList_seq, lookup_seq)
# ret_x_seq = revert_seq(ret_x_seq, PedsList_seq, lookup_seq, target_id_values, first_values_dict)
loss_batch += loss.item()
err_batch += err
f_err_batch += f_err
end = time.time()
print('Current file : ', dataloader_v.get_file_name(0),' Batch : ', batch+1, ' Sequence: ', sequence+1, ' Sequence mean error: ', err,' Sequence final error: ',f_err,' time: ', end - start)
loss_batch = loss_batch / dataloader_v.batch_size
err_batch = err_batch / dataloader_v.batch_size
f_err_batch = f_err_batch / dataloader_v.batch_size
num_of_batch += 1
loss_epoch += loss_batch
err_epoch += err_batch
f_err_epoch += f_err_batch
total_process_end = time.time()
if dataloader_v.num_batches != 0:
loss_epoch = loss_epoch / dataloader_v.num_batches
err_epoch = err_epoch / dataloader_v.num_batches
f_err_epoch = f_err_epoch / dataloader_v.num_batches
# calculate avarage error and time
avg_err = (err_epoch+f_err_epoch)/2
elapsed_time = (total_process_end - total_process_start)
args.time = elapsed_time
args.avg_err = avg_err
score.append(avg_err)
param_set.append(args)
print('valid_loss = {:.3f}, valid_mean_err = {:.3f}, valid_final_err = {:.3f}, score = {:.3f}, time = {:.3f}'.format(loss_epoch, err_epoch, f_err_epoch, avg_err, elapsed_time))
log_file.write('valid_loss = {:.3f}, valid_mean_err = {:.3f}, valid_final_err = {:.3f}, score = {:.3f}, time = {:.3f}'.format(loss_epoch, err_epoch, f_err_epoch, avg_err, elapsed_time)+'\n')
print("--------------------------Best ", args.best_n," configuration------------------------")
log_file.write("-----------------------------Best "+str(args.best_n) +" configuration---------------------"+'\n')
biggest_indexes = np.array(score).argsort()[-args.best_n:]
print("biggest_index: ", biggest_indexes)
for arr_index, index in enumerate(biggest_indexes):
print("&&&&&&&&&&&&&&&&&&&& ", arr_index," &&&&&&&&&&&&&&&&&&&&&&")
log_file.write("&&&&&&&&&&&&&&&&&&&& "+ str(arr_index)+" &&&&&&&&&&&&&&&&&&&&&&"+'\n')
curr_arg = param_set[index]
write_to_file(log_file, curr_arg)
print_to_screen(curr_arg)
print("score: ",score)
print('error = {:.3f}, time = {:.3f}'.format(curr_arg.avg_err, curr_arg.time))
log_file.write('error = {:.3f}, time = {:.3f}'.format(curr_arg.avg_err, curr_arg.time)+'\n')
if __name__ == '__main__':
main()