forked from amanpro30/Algorithms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
huffman1.c
298 lines (217 loc) · 6.8 KB
/
huffman1.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
#include <stdio.h>
#include <stdlib.h>
// This constant can be avoided by explicitly
// calculating height of Huffman Tree
#define MAX_TREE_HT 100
// A Huffman tree node
struct MinHeapNode {
// One of the input characters
char data;
// Frequency of the character
unsigned freq;
// Left and right child of this node
struct MinHeapNode *left, *right;
};
// A Min Heap: Collection of
// min-heap (or Huffman tree) nodes
struct MinHeap {
// Current size of min heap
unsigned size;
// capacity of min heap
unsigned capacity;
// Array of minheap node pointers
struct MinHeapNode** array;
};
// A utility function allocate a new
// min heap node with given character
// and frequency of the character
struct MinHeapNode* newNode(char data, unsigned freq)
{
struct MinHeapNode* temp
= (struct MinHeapNode*)malloc
(sizeof(struct MinHeapNode));
temp->left = temp->right = NULL;
temp->data = data;
temp->freq = freq;
return temp;
}
// A utility function to create
// a min heap of given capacity
struct MinHeap* createMinHeap(unsigned capacity)
{
struct MinHeap* minHeap
= (struct MinHeap*)malloc(sizeof(struct MinHeap));
// current size is 0
minHeap->size = 0;
minHeap->capacity = capacity;
minHeap->array
= (struct MinHeapNode**)malloc(minHeap->
capacity * sizeof(struct MinHeapNode*));
return minHeap;
}
// A utility function to
// swap two min heap nodes
void swapMinHeapNode(struct MinHeapNode** a,
struct MinHeapNode** b)
{
struct MinHeapNode* t = *a;
*a = *b;
*b = t;
}
// The standard minHeapify function.
void minHeapify(struct MinHeap* minHeap, int idx)
{
int smallest = idx;
int left = 2 * idx + 1;
int right = 2 * idx + 2;
if (left < minHeap->size && minHeap->array[left]->
freq < minHeap->array[smallest]->freq)
smallest = left;
if (right < minHeap->size && minHeap->array[right]->
freq < minHeap->array[smallest]->freq)
smallest = right;
if (smallest != idx) {
swapMinHeapNode(&minHeap->array[smallest],
&minHeap->array[idx]);
minHeapify(minHeap, smallest);
}
}
// A utility function to check
// if size of heap is 1 or not
int isSizeOne(struct MinHeap* minHeap)
{
return (minHeap->size == 1);
}
// A standard function to extract
// minimum value node from heap
struct MinHeapNode* extractMin(struct MinHeap* minHeap)
{
struct MinHeapNode* temp = minHeap->array[0];
minHeap->array[0]
= minHeap->array[minHeap->size - 1];
--minHeap->size;
minHeapify(minHeap, 0);
return temp;
}
// A utility function to insert
// a new node to Min Heap
void insertMinHeap(struct MinHeap* minHeap,
struct MinHeapNode* minHeapNode)
{
++minHeap->size;
int i = minHeap->size - 1;
while (i && minHeapNode->freq < minHeap->array[(i - 1) / 2]->freq) {
minHeap->array[i] = minHeap->array[(i - 1) / 2];
i = (i - 1) / 2;
}
minHeap->array[i] = minHeapNode;
}
// A standard function to build min heap
void buildMinHeap(struct MinHeap* minHeap)
{
int n = minHeap->size - 1;
int i;
for (i = (n - 1) / 2; i >= 0; --i)
minHeapify(minHeap, i);
}
// A utility function to print an array of size n
void printArr(int arr[], int n)
{
int i;
for (i = 0; i < n; ++i)
printf("%d", arr[i]);
printf("\n");
}
// Utility function to check if this node is leaf
int isLeaf(struct MinHeapNode* root)
{
return !(root->left) && !(root->right);
}
// Creates a min heap of capacity
// equal to size and inserts all character of
// data[] in min heap. Initially size of
// min heap is equal to capacity
struct MinHeap* createAndBuildMinHeap(char data[], int freq[], int size)
{
struct MinHeap* minHeap = createMinHeap(size);
for (int i = 0; i < size; ++i)
minHeap->array[i] = newNode(data[i], freq[i]);
minHeap->size = size;
buildMinHeap(minHeap);
return minHeap;
}
// The main function that builds Huffman tree
struct MinHeapNode* buildHuffmanTree(char data[], int freq[], int size)
{
struct MinHeapNode *left, *right, *top;
// Step 1: Create a min heap of capacity
// equal to size. Initially, there are
// modes equal to size.
struct MinHeap* minHeap = createAndBuildMinHeap(data, freq, size);
// Iterate while size of heap doesn't become 1
while (!isSizeOne(minHeap)) {
// Step 2: Extract the two minimum
// freq items from min heap
left = extractMin(minHeap);
right = extractMin(minHeap);
// Step 3: Create a new internal
// node with frequency equal to the
// sum of the two nodes frequencies.
// Make the two extracted node as
// left and right children of this new node.
// Add this node to the min heap
// '$' is a special value for internal nodes, not used
top = newNode('$', left->freq + right->freq);
top->left = left;
top->right = right;
insertMinHeap(minHeap, top);
}
// Step 4: The remaining node is the
// root node and the tree is complete.
return extractMin(minHeap);
}
// Prints huffman codes from the root of Huffman Tree.
// It uses arr[] to store codes
void printCodes(struct MinHeapNode* root, int arr[], int top)
{
// Assign 0 to left edge and recur
if (root->left) {
arr[top] = 0;
printCodes(root->left, arr, top + 1);
}
// Assign 1 to right edge and recur
if (root->right) {
arr[top] = 1;
printCodes(root->right, arr, top + 1);
}
// If this is a leaf node, then
// it contains one of the input
// characters, print the character
// and its code from arr[]
if (isLeaf(root)) {
printf("%c: ", root->data);
printArr(arr, top);
}
}
// The main function that builds a
// Huffman Tree and print codes by traversing
// the built Huffman Tree
void HuffmanCodes(char data[], int freq[], int size)
{
// Construct Huffman Tree
struct MinHeapNode* root
= buildHuffmanTree(data, freq, size);
// Print Huffman codes using
// the Huffman tree built above
int arr[MAX_TREE_HT], top = 0;
printCodes(root, arr, top);
}
// Driver program to test above functions
int main()
{
char arr[] = { 'a', 'b', 'c', 'd', 'e', 'f' };
int freq[] = { 5, 9, 12, 13, 16, 45 };
int size = sizeof(arr) / sizeof(arr[0]);
HuffmanCodes(arr, freq, size);
return 0;
}