-
Notifications
You must be signed in to change notification settings - Fork 41
/
clock.c
677 lines (526 loc) · 17.9 KB
/
clock.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
/* CLOCK.C (c) Copyright Jan Jaeger, 2000-2009 */
/* TOD Clock functions */
/*-------------------------------------------------------------------*/
/* The emulated hardware clock is based on the host clock, adjusted */
/* by means of an offset and a steering rate. */
/*-------------------------------------------------------------------*/
#include "hstdinc.h"
#if !defined(_HENGINE_DLL_)
#define _HENGINE_DLL_
#endif
#include "hercules.h"
#include "opcode.h"
#include "inline.h"
#include "sr.h"
#if !defined(_CLOCK_C_)
#define _CLOCK_C_
#include "clock.h"
// static int clock_state = CC_CLOCK_SET;
static CSR old;
static CSR new;
static CSR *current = &new;
void csr_reset()
{
new.start_time = 0;
new.base_offset = 0;
new.fine_s_rate = 0;
new.gross_s_rate = 0;
current = &new;
old = new;
}
static U64 universal_tod;
static U64 universal_clock(void) /* really: any clock used as a base */
{
struct timeval tv;
gettimeofday (&tv, NULL);
/* Load number of seconds since 00:00:00 01 Jan 1970 */
universal_tod = (U64)tv.tv_sec;
universal_tod += SECONDS_IN_SEVENTY_YEARS;
/* Convert to microseconds */
universal_tod = (universal_tod * 1000000) + tv.tv_usec;
/* Shift left 4 bits so that bits 0-7=TOD Clock Epoch,
bits 8-59=TOD Clock bits 0-51, bits 60-63=zero */
universal_tod <<= 4;
return universal_tod;
}
/* The hercules hardware clock, based on the universal clock, but */
/* running at its own speed as optionally set by set_tod_steering() */
/* The hardware clock returns a unique value */
static double hw_steering = 0.0; /* Current TOD clock steering rate */
static U64 hw_episode; /* TOD of start of steering episode */
static S64 hw_offset = 0; /* Current offset between TOD and HW */
// static U64 hw_tod = 0; /* Globally defined in clock.h */
static inline U64 hw_adjust(U64 base_tod)
{
/* Apply hardware offset, this is the offset achieved by all
previous steering episodes */
base_tod += hw_offset;
/* Apply the steering offset from the current steering episode */
base_tod += (S64)(base_tod - hw_episode) * hw_steering;
/* Ensure that the clock returns a unique value */
if(hw_tod < base_tod)
return base_tod;
else
return hw_tod += 0x10;
}
U64 hw_clock(void)
{
U64 temp_tod;
obtain_lock(&sysblk.todlock);
/* Get the time of day (GMT) */
temp_tod = universal_clock();
/* Ajust speed and ensure uniqueness */
hw_tod = hw_adjust(temp_tod);
release_lock(&sysblk.todlock);
return hw_tod;
}
static U64 hw_clock_l(void)
{
hw_tod = hw_adjust(universal_clock());
return hw_tod;
}
/* set_tod_steering(double) sets a new steering rate. */
/* When a new steering episode begins, the offset is adjusted, */
/* and the new steering rate takes effect */
void set_tod_steering(double steering)
{
obtain_lock(&sysblk.todlock);
hw_offset = hw_clock_l() - universal_tod;
hw_episode = hw_tod;
hw_steering = steering;
release_lock(&sysblk.todlock);
}
/* Start a new episode */
static inline void start_new_episode()
{
hw_offset = hw_tod - universal_tod;
hw_episode = hw_tod;
new.start_time = hw_episode;
hw_steering = ldexp(2,-44) * (S32)(new.fine_s_rate + new.gross_s_rate);
current = &new;
}
/* Prepare for a new episode */
static inline void prepare_new_episode()
{
if(current == &new)
{
old = new;
current = &old;
}
}
/* Ajust the epoch for all active cpu's in the configuration */
static U64 adjust_epoch_cpu_all(U64 epoch)
{
int cpu;
/* Update the TOD clock of all CPU's in the configuration
as we simulate 1 shared TOD clock, and do not support the
TOD clock sync check */
for (cpu = 0; cpu < MAX_CPU; cpu++)
{
obtain_lock(&sysblk.cpulock[cpu]);
if (IS_CPU_ONLINE(cpu))
sysblk.regs[cpu]->tod_epoch = epoch;
release_lock(&sysblk.cpulock[cpu]);
}
return epoch;
}
double get_tod_steering(void)
{
return hw_steering;
}
void set_tod_epoch(S64 epoch)
{
obtain_lock(&sysblk.todlock);
csr_reset();
tod_epoch = epoch;
release_lock(&sysblk.todlock);
adjust_epoch_cpu_all(epoch);
}
void adjust_tod_epoch(S64 epoch)
{
obtain_lock(&sysblk.todlock);
csr_reset();
tod_epoch += epoch;
release_lock(&sysblk.todlock);
adjust_epoch_cpu_all(tod_epoch);
}
void set_tod_clock(U64 tod)
{
set_tod_epoch(tod - hw_clock());
}
S64 get_tod_epoch()
{
return tod_epoch;
}
static void set_gross_steering_rate(S32 gsr)
{
obtain_lock(&sysblk.todlock);
prepare_new_episode();
new.gross_s_rate = gsr;
release_lock(&sysblk.todlock);
}
static void set_fine_steering_rate(S32 fsr)
{
obtain_lock(&sysblk.todlock);
prepare_new_episode();
new.fine_s_rate = fsr;
release_lock(&sysblk.todlock);
}
static void set_tod_offset(S64 offset)
{
obtain_lock(&sysblk.todlock);
prepare_new_episode();
new.base_offset = offset;
release_lock(&sysblk.todlock);
}
static void adjust_tod_offset(S64 offset)
{
obtain_lock(&sysblk.todlock);
prepare_new_episode();
new.base_offset = old.base_offset + offset;
release_lock(&sysblk.todlock);
}
/* The cpu timer is internally kept as an offset to the hw_clock()
* the cpu timer counts down as the clock approaches the timer epoch
*/
void set_cpu_timer(REGS *regs, S64 timer)
{
regs->cpu_timer = (timer >> 8) + hw_clock();
}
S64 cpu_timer(REGS *regs)
{
S64 timer;
timer = (regs->cpu_timer - hw_clock()) << 8;
return timer;
}
U64 tod_clock(REGS *regs)
{
U64 current_tod;
obtain_lock(&sysblk.todlock);
current_tod = hw_clock_l();
/* If we are in the old episode, and the new episode has arrived
then we must take action to start the new episode */
if(current == &old)
start_new_episode();
/* Set the clock to the new updated value with offset applied */
current_tod += current->base_offset;
tod_value = current_tod;
release_lock(&sysblk.todlock);
return current_tod + regs->tod_epoch;
}
#if defined(_FEATURE_INTERVAL_TIMER)
#if defined(_FEATURE_ECPSVM)
static inline S32 ecps_vtimer(REGS *regs)
{
return (S32)TOD_TO_ITIMER((S64)(regs->ecps_vtimer - hw_clock()));
}
static inline void set_ecps_vtimer(REGS *regs, S32 vtimer)
{
regs->ecps_vtimer = (U64)(hw_clock() + ITIMER_TO_TOD(vtimer));
regs->ecps_oldtmr = vtimer;
}
#endif /*defined(_FEATURE_ECPSVM)*/
S32 int_timer(REGS *regs)
{
return (S32)TOD_TO_ITIMER((S64)(regs->int_timer - hw_clock()));
}
void set_int_timer(REGS *regs, S32 itimer)
{
regs->int_timer = (U64)(hw_clock() + ITIMER_TO_TOD(itimer));
regs->old_timer = itimer;
}
int chk_int_timer(REGS *regs)
{
S32 itimer;
int pending = 0;
itimer = int_timer(regs);
if(itimer < 0 && regs->old_timer >= 0)
{
ON_IC_ITIMER(regs);
pending = 1;
regs->old_timer=itimer;
}
#if defined(_FEATURE_ECPSVM)
if(regs->ecps_vtmrpt)
{
itimer = ecps_vtimer(regs);
if(itimer < 0 && regs->ecps_oldtmr >= 0)
{
ON_IC_ECPSVTIMER(regs);
pending += 2;
}
}
#endif /*defined(_FEATURE_ECPSVM)*/
return pending;
}
#endif /*defined(_FEATURE_INTERVAL_TIMER)*/
/*-------------------------------------------------------------------*/
/* Update TOD clock */
/* */
/* This function updates the TOD clock. */
/* */
/* This function is called by timer_update_thread and by cpu_thread */
/* instructions that manipulate any of the timer related entities */
/* (clock comparator, cpu timer and interval timer). */
/* */
/* Internal function `check_timer_event' is called which will signal */
/* any timer related interrupts to the appropriate cpu_thread. */
/* */
/* Callers *must* own the todlock and *must not* own the intlock. */
/* */
/* update_tod_clock() returns the tod delta, by which the cpu timer */
/* has been adjusted. */
/* */
/*-------------------------------------------------------------------*/
// static U64 tod_value;
U64 update_tod_clock(void)
{
U64 new_clock;
obtain_lock(&sysblk.todlock);
new_clock = hw_clock_l();
/* If we are in the old episode, and the new episode has arrived
then we must take action to start the new episode */
if(current == &old)
start_new_episode();
/* Set the clock to the new updated value with offset applied */
new_clock += current->base_offset;
tod_value = new_clock;
release_lock(&sysblk.todlock);
/* Update the timers and check if either a clock related event has
become pending */
update_cpu_timer();
return new_clock;
}
#define SR_SYS_CLOCK_CURRENT_CSR ( SR_SYS_CLOCK | 0x001 )
#define SR_SYS_CLOCK_UNIVERSAL_TOD ( SR_SYS_CLOCK | 0x002 )
#define SR_SYS_CLOCK_HW_STEERING ( SR_SYS_CLOCK | 0x004 )
#define SR_SYS_CLOCK_HW_EPISODE ( SR_SYS_CLOCK | 0x005 )
#define SR_SYS_CLOCK_HW_OFFSET ( SR_SYS_CLOCK | 0x006 )
#define SR_SYS_CLOCK_OLD_CSR ( SR_SYS_CLOCK | 0x100 )
#define SR_SYS_CLOCK_OLD_CSR_START_TIME ( SR_SYS_CLOCK | 0x101 )
#define SR_SYS_CLOCK_OLD_CSR_BASE_OFFSET ( SR_SYS_CLOCK | 0x102 )
#define SR_SYS_CLOCK_OLD_CSR_FINE_S_RATE ( SR_SYS_CLOCK | 0x103 )
#define SR_SYS_CLOCK_OLD_CSR_GROSS_S_RATE ( SR_SYS_CLOCK | 0x104 )
#define SR_SYS_CLOCK_NEW_CSR ( SR_SYS_CLOCK | 0x200 )
#define SR_SYS_CLOCK_NEW_CSR_START_TIME ( SR_SYS_CLOCK | 0x201 )
#define SR_SYS_CLOCK_NEW_CSR_BASE_OFFSET ( SR_SYS_CLOCK | 0x202 )
#define SR_SYS_CLOCK_NEW_CSR_FINE_S_RATE ( SR_SYS_CLOCK | 0x203 )
#define SR_SYS_CLOCK_NEW_CSR_GROSS_S_RATE ( SR_SYS_CLOCK | 0x204 )
int clock_hsuspend(void *file)
{
int i;
char buf[SR_MAX_STRING_LENGTH];
i = (current == &new);
SR_WRITE_VALUE(file, SR_SYS_CLOCK_CURRENT_CSR, i, sizeof(i));
SR_WRITE_VALUE(file, SR_SYS_CLOCK_UNIVERSAL_TOD, universal_tod, sizeof(universal_tod));
snprintf(buf, sizeof(buf), "%f", hw_steering);
SR_WRITE_STRING(file, SR_SYS_CLOCK_HW_STEERING, buf);
SR_WRITE_VALUE(file, SR_SYS_CLOCK_HW_EPISODE, hw_episode, sizeof(hw_episode));
SR_WRITE_VALUE(file, SR_SYS_CLOCK_HW_OFFSET, hw_offset, sizeof(hw_offset));
SR_WRITE_VALUE(file, SR_SYS_CLOCK_OLD_CSR_START_TIME, old.start_time, sizeof(old.start_time));
SR_WRITE_VALUE(file, SR_SYS_CLOCK_OLD_CSR_BASE_OFFSET, old.base_offset, sizeof(old.base_offset));
SR_WRITE_VALUE(file, SR_SYS_CLOCK_OLD_CSR_FINE_S_RATE, old.fine_s_rate, sizeof(old.fine_s_rate));
SR_WRITE_VALUE(file, SR_SYS_CLOCK_OLD_CSR_GROSS_S_RATE, old.gross_s_rate, sizeof(old.gross_s_rate));
SR_WRITE_VALUE(file, SR_SYS_CLOCK_NEW_CSR_START_TIME, new.start_time, sizeof(new.start_time));
SR_WRITE_VALUE(file, SR_SYS_CLOCK_NEW_CSR_BASE_OFFSET, new.base_offset, sizeof(new.base_offset));
SR_WRITE_VALUE(file, SR_SYS_CLOCK_NEW_CSR_FINE_S_RATE, new.fine_s_rate, sizeof(new.fine_s_rate));
SR_WRITE_VALUE(file, SR_SYS_CLOCK_NEW_CSR_GROSS_S_RATE, new.gross_s_rate, sizeof(new.gross_s_rate));
return 0;
}
int clock_hresume(void *file)
{
size_t key, len;
int i;
float f;
char buf[SR_MAX_STRING_LENGTH];
memset(&old, 0, sizeof(CSR));
memset(&new, 0, sizeof(CSR));
current = &new;
universal_tod = 0;
hw_steering = 0.0;
hw_episode = 0;
hw_offset = 0;
do {
SR_READ_HDR(file, key, len);
switch (key) {
case SR_SYS_CLOCK_CURRENT_CSR:
SR_READ_VALUE(file, len, &i, sizeof(i));
current = i ? &new : &old;
break;
case SR_SYS_CLOCK_UNIVERSAL_TOD:
SR_READ_VALUE(file, len, &universal_tod, sizeof(universal_tod));
break;
case SR_SYS_CLOCK_HW_STEERING:
SR_READ_STRING(file, buf, len);
sscanf(buf, "%f",&f);
hw_steering = f;
break;
case SR_SYS_CLOCK_HW_EPISODE:
SR_READ_VALUE(file, len, &hw_episode, sizeof(hw_episode));
break;
case SR_SYS_CLOCK_HW_OFFSET:
SR_READ_VALUE(file, len, &hw_offset, sizeof(hw_offset));
break;
case SR_SYS_CLOCK_OLD_CSR_START_TIME:
SR_READ_VALUE(file, len, &old.start_time, sizeof(old.start_time));
break;
case SR_SYS_CLOCK_OLD_CSR_BASE_OFFSET:
SR_READ_VALUE(file, len, &old.base_offset, sizeof(old.base_offset));
break;
case SR_SYS_CLOCK_OLD_CSR_FINE_S_RATE:
SR_READ_VALUE(file, len, &old.fine_s_rate, sizeof(old.fine_s_rate));
break;
case SR_SYS_CLOCK_OLD_CSR_GROSS_S_RATE:
SR_READ_VALUE(file, len, &old.gross_s_rate, sizeof(old.gross_s_rate));
break;
case SR_SYS_CLOCK_NEW_CSR_START_TIME:
SR_READ_VALUE(file, len, &new.start_time, sizeof(new.start_time));
break;
case SR_SYS_CLOCK_NEW_CSR_BASE_OFFSET:
SR_READ_VALUE(file, len, &new.base_offset, sizeof(new.base_offset));
break;
case SR_SYS_CLOCK_NEW_CSR_FINE_S_RATE:
SR_READ_VALUE(file, len, &new.fine_s_rate, sizeof(new.fine_s_rate));
break;
case SR_SYS_CLOCK_NEW_CSR_GROSS_S_RATE:
SR_READ_VALUE(file, len, &new.gross_s_rate, sizeof(new.gross_s_rate));
break;
default:
SR_READ_SKIP(file, len);
break;
}
} while ((key & SR_SYS_MASK) == SR_SYS_CLOCK);
return 0;
}
#endif
#if defined(FEATURE_INTERVAL_TIMER)
static void ARCH_DEP(_store_int_timer_2) (REGS *regs,int getlock)
{
S32 itimer;
S32 vtimer=0;
if(getlock)
{
OBTAIN_INTLOCK(regs->hostregs?regs:NULL);
}
itimer=int_timer(regs);
STORE_FW(regs->psa->inttimer, itimer);
#if defined(FEATURE_ECPSVM)
if(regs->ecps_vtmrpt)
{
vtimer=ecps_vtimer(regs);
STORE_FW(regs->ecps_vtmrpt, vtimer);
}
#endif /*defined(FEATURE_ECPSVM)*/
chk_int_timer(regs);
#if defined(FEATURE_ECPSVM)
if(regs->ecps_vtmrpt)
{
regs->ecps_oldtmr = vtimer;
}
#endif /*defined(FEATURE_ECPSVM)*/
if(getlock)
{
RELEASE_INTLOCK(regs->hostregs?regs:NULL);
}
}
DLL_EXPORT void ARCH_DEP(store_int_timer) (REGS *regs)
{
ARCH_DEP(_store_int_timer_2) (regs,1);
}
void ARCH_DEP(store_int_timer_nolock) (REGS *regs)
{
ARCH_DEP(_store_int_timer_2) (regs,0);
}
DLL_EXPORT void ARCH_DEP(fetch_int_timer) (REGS *regs)
{
S32 itimer;
FETCH_FW(itimer, regs->psa->inttimer);
OBTAIN_INTLOCK(regs->hostregs?regs:NULL);
set_int_timer(regs, itimer);
#if defined(FEATURE_ECPSVM)
if(regs->ecps_vtmrpt)
{
FETCH_FW(itimer, regs->ecps_vtmrpt);
set_ecps_vtimer(regs, itimer);
}
#endif /*defined(FEATURE_ECPSVM)*/
RELEASE_INTLOCK(regs->hostregs?regs:NULL);
}
#endif
#if defined(FEATURE_TOD_CLOCK_STEERING)
void ARCH_DEP(set_gross_s_rate) (REGS *regs)
{
S32 gsr;
gsr = ARCH_DEP(vfetch4) (regs->GR(1) & ADDRESS_MAXWRAP(regs), 1, regs);
set_gross_steering_rate(gsr);
}
void ARCH_DEP(set_fine_s_rate) (REGS *regs)
{
S32 fsr;
fsr = ARCH_DEP(vfetch4) (regs->GR(1) & ADDRESS_MAXWRAP(regs), 1, regs);
set_fine_steering_rate(fsr);
}
void ARCH_DEP(set_tod_offset) (REGS *regs)
{
S64 offset;
offset = ARCH_DEP(vfetch8) (regs->GR(1) & ADDRESS_MAXWRAP(regs), 1, regs);
set_tod_offset(offset >> 8);
}
void ARCH_DEP(adjust_tod_offset) (REGS *regs)
{
S64 offset;
offset = ARCH_DEP(vfetch8) (regs->GR(1) & ADDRESS_MAXWRAP(regs), 1, regs);
adjust_tod_offset(offset >> 8);
}
void ARCH_DEP(query_physical_clock) (REGS *regs)
{
ARCH_DEP(vstore8) (universal_clock() << 8, regs->GR(1) & ADDRESS_MAXWRAP(regs), 1, regs);
}
void ARCH_DEP(query_steering_information) (REGS *regs)
{
PTFFQSI qsi;
obtain_lock(&sysblk.todlock);
STORE_DW(qsi.physclk, universal_clock() << 8);
STORE_DW(qsi.oldestart, old.start_time << 8);
STORE_DW(qsi.oldebase, old.base_offset << 8);
STORE_FW(qsi.oldfsr, old.fine_s_rate );
STORE_FW(qsi.oldgsr, old.gross_s_rate );
STORE_DW(qsi.newestart, new.start_time << 8);
STORE_DW(qsi.newebase, new.base_offset << 8);
STORE_FW(qsi.newfsr, new.fine_s_rate );
STORE_FW(qsi.newgsr, new.gross_s_rate );
release_lock(&sysblk.todlock);
ARCH_DEP(vstorec) (&qsi, sizeof(qsi)-1, regs->GR(1) & ADDRESS_MAXWRAP(regs), 1, regs);
}
void ARCH_DEP(query_tod_offset) (REGS *regs)
{
PTFFQTO qto;
obtain_lock(&sysblk.todlock);
STORE_DW(qto.todoff, (hw_clock_l() - universal_tod) << 8);
STORE_DW(qto.physclk, universal_tod << 8);
STORE_DW(qto.ltodoff, current->base_offset << 8);
STORE_DW(qto.todepoch, regs->tod_epoch << 8);
release_lock(&sysblk.todlock);
ARCH_DEP(vstorec) (&qto, sizeof(qto)-1, regs->GR(1) & ADDRESS_MAXWRAP(regs), 1, regs);
}
void ARCH_DEP(query_available_functions) (REGS *regs)
{
PTFFQAF qaf;
STORE_FW(qaf.sb[0] , 0xF0000000); /* Functions 0x00..0x1F */
STORE_FW(qaf.sb[1] , 0x00000000); /* Functions 0x20..0x3F */
STORE_FW(qaf.sb[2] , 0xF0000000); /* Functions 0x40..0x5F */
STORE_FW(qaf.sb[3] , 0x00000000); /* Functions 0x60..0x7F */
ARCH_DEP(vstorec) (&qaf, sizeof(qaf)-1, regs->GR(1) & ADDRESS_MAXWRAP(regs), 1, regs);
}
#endif /*defined(FEATURE_TOD_CLOCK_STEERING)*/
#if !defined(_GEN_ARCH)
#if defined(_ARCHMODE2)
#define _GEN_ARCH _ARCHMODE2
#include "clock.c"
#endif
#if defined(_ARCHMODE3)
#undef _GEN_ARCH
#define _GEN_ARCH _ARCHMODE3
#include "clock.c"
#endif
#endif /*!defined(_GEN_ARCH)*/