-
Notifications
You must be signed in to change notification settings - Fork 2
/
train_multilabel_models.py
221 lines (181 loc) · 7.47 KB
/
train_multilabel_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
# IMPORTS
import pandas as pd
from nltk import tokenize
import time
from sklearn.model_selection import train_test_split
from transformers import BertConfig, BertTokenizer, TFBertModel
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow import convert_to_tensor
from tensorflow.keras.layers import Input, Dense
from tensorflow.keras.initializers import TruncatedNormal
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.metrics import BinaryAccuracy, Precision, Recall
# SET PARAMETERS
DATA_PATH="..."
SAVE_MODELS_TO=".../"
# READ DATA
tab=pd.read_hdf(DATA_PATH)
# SLICE DATA
def slice_data(dataframe, label):
"""Slices dataframe of a structure:
| text/abstract | label |
Prepares data for a binary classification
training. For a given label, creates new
dataset where number of items belonging
to the given label equals number of randomly
generated items from all the other labels items.
"""
label_data=dataframe[dataframe[label]==1]
label_data_len=len(label_data)
temp_data=dataframe.copy()[dataframe[label]!=1].sample(n=label_data_len)
label_data=label_data[["Abstract", label]]
label_data=label_data.append(temp_data[["Abstract", label]])
label_data.columns=["Abstract", "Label"]
return label_data
# PREPARE DATA FOR BERT
def data_to_values(dataframe):
"""Converts data to values.
"""
abstracts=dataframe.Abstract.values
labels=dataframe.Label.values
return abstracts, labels
def tokenize_abstracts(abstracts):
"""For given texts, adds '[CLS]' and '[SEP]' tokens
at the beginning and the end of each sentence, respectively.
"""
t_abstracts=[]
for abstract in abstracts:
t_abstract="[CLS] "
for sentence in tokenize.sent_tokenize(abstract):
t_abstract=t_abstract + sentence + " [SEP] "
t_abstracts.append(t_abstract)
return t_abstracts
tokenizer=BertTokenizer.from_pretrained('bert-base-multilingual-uncased')
def b_tokenize_abstracts(t_abstracts, max_len=512):
"""Tokenizes sentences with the help
of a 'bert-base-multilingual-uncased' tokenizer.
"""
b_t_abstracts=[tokenizer.tokenize(_)[:max_len] for _ in t_abstracts]
return b_t_abstracts
def convert_to_ids(b_t_abstracts):
"""Converts tokens to its specific
IDs in a bert vocabulary.
"""
input_ids=[tokenizer.convert_tokens_to_ids(_) for _ in b_t_abstracts]
return input_ids
def abstracts_to_ids(abstracts):
"""Tokenizes abstracts and converts
tokens to their specific IDs
in a bert vocabulary.
"""
tokenized_abstracts=tokenize_abstracts(abstracts)
b_tokenized_abstracts=b_tokenize_abstracts(tokenized_abstracts)
ids=convert_to_ids(b_tokenized_abstracts)
return ids
def pad_ids(input_ids, max_len=512):
"""Padds sequences of a given IDs.
"""
p_input_ids=pad_sequences(input_ids,
maxlen=max_len,
dtype="long",
truncating="post",
padding="post")
return p_input_ids
def create_attention_masks(inputs):
"""Creates attention masks
for a given seuquences.
"""
masks=[]
for sequence in inputs:
sequence_mask=[float(_>0) for _ in sequence]
masks.append(sequence_mask)
return masks
# CREATE MODEL
def create_model(label):
config=BertConfig.from_pretrained(
"bert-base-multilingual-uncased",
num_labels=2,
hidden_dropout_prob=0.2,
attention_probs_dropout_prob=0.2)
bert=TFBertModel.from_pretrained(
"bert-base-multilingual-uncased",
config=config)
bert_layer=bert.layers[0]
input_ids_layer=Input(
shape=(512),
name="input_ids",
dtype="int32")
input_attention_masks_layer=Input(
shape=(512),
name="attention_masks",
dtype="int32")
bert_model=bert_layer(
input_ids_layer,
input_attention_masks_layer)
target_layer=Dense(
units=1,
kernel_initializer=TruncatedNormal(stddev=config.initializer_range),
name="target_layer",
activation="sigmoid")(bert_model[1])
model=Model(
inputs=[input_ids_layer, input_attention_masks_layer],
outputs=target_layer,
name="model_"+label.replace(".", "_"))
optimizer=Adam(
learning_rate=5e-05,
epsilon=1e-08,
decay=0.01,
clipnorm=1.0)
model.compile(
optimizer=optimizer,
loss="binary_crossentropy",
metrics=[BinaryAccuracy(), Precision(), Recall()])
return model
# THE LOOP
test_scores=[]
elapsed_times=[]
for _ in tab.columns[4:]: # here you have to specify the index where label’s columns start
print(f"PROCESSING TARGET {_}...")
start_time=time.process_time()
data=slice_data(tab, _)
print("Data sliced.")
abstracts, labels=data_to_values(data)
ids=abstracts_to_ids(abstracts)
print("Abstracts tokenized, tokens converted to ids.")
padded_ids=pad_ids(ids)
print("Sequences padded.")
train_inputs, temp_inputs, train_labels, temp_labels=train_test_split(padded_ids, labels, random_state=1993, test_size=0.3)
validation_inputs, test_inputs, validation_labels, test_labels=train_test_split(temp_inputs, temp_labels, random_state=1993, test_size=0.5)
print("Data splited into train, validation, test sets.")
train_masks, validation_masks, test_masks=[create_attention_masks(_) for _ in [train_inputs, validation_inputs, test_inputs]]
print("Attention masks created.")
train_inputs, validation_inputs, test inputs=[convert_to_tensor(_) for _ in [train_inputs, validation_inputs, test_inputs]]
print("Inputs converted to tensors.")
train_labels, validation_labels, test_labels=[convert_to_tensor(_) for _ in [train_lables, validation_labels, test_labels]]
print("Labels converted to tensors.")
train_masks, validation_masks, test_masks=[convert_to_tensor(_) for _ in [train_masks, validation_masks, test_masks]]
print("Masks converted to tensors.")
model=create_model(_)
print("Model initialized.")
history=model.fit([train_inputs, train_masks], train_labels,
batch_size=3,
epochs=3,
validation_data=([validation_inputs, validation_masks], validation_labels))
histories.append(history)
print(f"Model for {_} target trained.")
model.save(SAVE_MODELS_TO+_.replace(".", "_")+".h5")
print(f"Model for target {_} saved.")
test_score=model.evaluate([test_inputs, test_masks], test_labels,
batch_size=3)
elapsed_times.append(time.process_time()-start_time)
test_scores.append(test_score)
print(f"""Model for target {_} tested.
.
.
.""")
# SAVE STATISTICS
stats=pd.DataFrame(test_scores, columns=["loss", "accuracy", "precision", "recall"])
stats.insert(loc=0, "target", tab.columns[4:])
stats.insert(loc=5, "elapsed_time", elapsed_times)
stats.to_excel(SAVE_MODELS_TO+"_stats.xlsx", index=False)