-
Notifications
You must be signed in to change notification settings - Fork 1
/
type.go
937 lines (839 loc) · 27.2 KB
/
type.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gobi
import (
"encoding"
"errors"
"fmt"
"os"
"reflect"
"sync"
"sync/atomic"
"unicode"
"unicode/utf8"
)
const (
tagName = "gobi"
tagDeprecated = "deprecated"
)
// userTypeInfo stores the information associated with a type the user has handed
// to the package. It's computed once and stored in a map keyed by reflection
// type.
type userTypeInfo struct {
user reflect.Type // the type the user handed us
base reflect.Type // the base type after all indirections
indir int // number of indirections to reach the base type
externalEnc int // xGob, xBinary, or xText
externalDec int // xGob, xBinary or xText
encIndir int8 // number of indirections to reach the receiver type; may be negative
decIndir int8 // number of indirections to reach the receiver type; may be negative
}
// externalEncoding bits
const (
xGob = 1 + iota // GobEncoder or GobDecoder
xBinary // encoding.BinaryMarshaler or encoding.BinaryUnmarshaler
xText // encoding.TextMarshaler or encoding.TextUnmarshaler
)
var (
// Protected by an RWMutex because we read it a lot and write
// it only when we see a new type, typically when compiling.
userTypeLock sync.RWMutex
userTypeCache = make(map[reflect.Type]*userTypeInfo)
)
// validType returns, and saves, the information associated with user-provided type rt.
// If the user type is not valid, err will be non-nil. To be used when the error handler
// is not set up.
func validUserType(rt reflect.Type) (ut *userTypeInfo, err error) {
userTypeLock.RLock()
ut = userTypeCache[rt]
userTypeLock.RUnlock()
if ut != nil {
return
}
// Now set the value under the write lock.
userTypeLock.Lock()
defer userTypeLock.Unlock()
if ut = userTypeCache[rt]; ut != nil {
// Lost the race; not a problem.
return
}
ut = new(userTypeInfo)
ut.base = rt
ut.user = rt
// A type that is just a cycle of pointers (such as type T *T) cannot
// be represented in gobs, which need some concrete data. We use a
// cycle detection algorithm from Knuth, Vol 2, Section 3.1, Ex 6,
// pp 539-540. As we step through indirections, run another type at
// half speed. If they meet up, there's a cycle.
slowpoke := ut.base // walks half as fast as ut.base
for {
pt := ut.base
if pt.Kind() != reflect.Ptr {
break
}
ut.base = pt.Elem()
if ut.base == slowpoke { // ut.base lapped slowpoke
// recursive pointer type.
return nil, errors.New("can't represent recursive pointer type " + ut.base.String())
}
if ut.indir%2 == 0 {
slowpoke = slowpoke.Elem()
}
ut.indir++
}
if ok, indir := implementsInterface(ut.user, gobEncoderInterfaceType); ok {
ut.externalEnc, ut.encIndir = xGob, indir
} else if ok, indir := implementsInterface(ut.user, binaryMarshalerInterfaceType); ok {
ut.externalEnc, ut.encIndir = xBinary, indir
}
// NOTE(rsc): Would like to allow MarshalText here, but results in incompatibility
// with older encodings for net.IP. See golang.org/issue/6760.
// } else if ok, indir := implementsInterface(ut.user, textMarshalerInterfaceType); ok {
// ut.externalEnc, ut.encIndir = xText, indir
// }
if ok, indir := implementsInterface(ut.user, gobDecoderInterfaceType); ok {
ut.externalDec, ut.decIndir = xGob, indir
} else if ok, indir := implementsInterface(ut.user, binaryUnmarshalerInterfaceType); ok {
ut.externalDec, ut.decIndir = xBinary, indir
}
// See note above.
// } else if ok, indir := implementsInterface(ut.user, textUnmarshalerInterfaceType); ok {
// ut.externalDec, ut.decIndir = xText, indir
// }
userTypeCache[rt] = ut
return
}
var (
gobEncoderInterfaceType = reflect.TypeOf((*GobEncoder)(nil)).Elem()
gobDecoderInterfaceType = reflect.TypeOf((*GobDecoder)(nil)).Elem()
binaryMarshalerInterfaceType = reflect.TypeOf((*encoding.BinaryMarshaler)(nil)).Elem()
binaryUnmarshalerInterfaceType = reflect.TypeOf((*encoding.BinaryUnmarshaler)(nil)).Elem()
textMarshalerInterfaceType = reflect.TypeOf((*encoding.TextMarshaler)(nil)).Elem()
textUnmarshalerInterfaceType = reflect.TypeOf((*encoding.TextUnmarshaler)(nil)).Elem()
)
// implementsInterface reports whether the type implements the
// gobEncoder/gobDecoder interface.
// It also returns the number of indirections required to get to the
// implementation.
func implementsInterface(typ, gobEncDecType reflect.Type) (success bool, indir int8) {
if typ == nil {
return
}
rt := typ
// The type might be a pointer and we need to keep
// dereferencing to the base type until we find an implementation.
for {
if rt.Implements(gobEncDecType) {
return true, indir
}
if p := rt; p.Kind() == reflect.Ptr {
indir++
if indir > 100 { // insane number of indirections
return false, 0
}
rt = p.Elem()
continue
}
break
}
// No luck yet, but if this is a base type (non-pointer), the pointer might satisfy.
if typ.Kind() != reflect.Ptr {
// Not a pointer, but does the pointer work?
if reflect.PtrTo(typ).Implements(gobEncDecType) {
return true, -1
}
}
return false, 0
}
// userType returns, and saves, the information associated with user-provided type rt.
// If the user type is not valid, it calls error.
func userType(rt reflect.Type) *userTypeInfo {
ut, err := validUserType(rt)
if err != nil {
error_(err)
}
return ut
}
// A typeId represents a gob Type as an integer that can be passed on the wire.
// Internally, typeIds are used as keys to a map to recover the underlying type info.
type typeId int32
var nextId typeId // incremented for each new type we build
var typeLock sync.Mutex // set while building a type
const firstUserId = 64 // lowest id number granted to user
type gobType interface {
id() typeId
setId(id typeId)
name() string
string() string // not public; only for debugging
safeString(seen map[typeId]bool) string
}
var types = make(map[reflect.Type]gobType)
var idToType = make(map[typeId]gobType)
var builtinIdToType map[typeId]gobType // set in init() after builtins are established
func setTypeId(typ gobType) {
// When building recursive types, someone may get there before us.
if typ.id() != 0 {
return
}
nextId++
typ.setId(nextId)
idToType[nextId] = typ
}
func (t typeId) gobType() gobType {
if t == 0 {
return nil
}
return idToType[t]
}
// string returns the string representation of the type associated with the typeId.
func (t typeId) string() string {
if t.gobType() == nil {
return "<nil>"
}
return t.gobType().string()
}
// Name returns the name of the type associated with the typeId.
func (t typeId) name() string {
if t.gobType() == nil {
return "<nil>"
}
return t.gobType().name()
}
// CommonType holds elements of all types.
// It is a historical artifact, kept for binary compatibility and exported
// only for the benefit of the package's encoding of type descriptors. It is
// not intended for direct use by clients.
type CommonType struct {
Name string
Id typeId
}
func (t *CommonType) id() typeId { return t.Id }
func (t *CommonType) setId(id typeId) { t.Id = id }
func (t *CommonType) string() string { return t.Name }
func (t *CommonType) safeString(seen map[typeId]bool) string {
return t.Name
}
func (t *CommonType) name() string { return t.Name }
// Create and check predefined types
// The string for tBytes is "bytes" not "[]byte" to signify its specialness.
var (
// Primordial types, needed during initialization.
// Always passed as pointers so the interface{} type
// goes through without losing its interfaceness.
tBool = bootstrapType("bool", (*bool)(nil), 1)
tInt = bootstrapType("int", (*int)(nil), 2)
tUint = bootstrapType("uint", (*uint)(nil), 3)
tFloat = bootstrapType("float", (*float64)(nil), 4)
tBytes = bootstrapType("bytes", (*[]byte)(nil), 5)
tString = bootstrapType("string", (*string)(nil), 6)
tComplex = bootstrapType("complex", (*complex128)(nil), 7)
tInterface = bootstrapType("interface", (*interface{})(nil), 8)
// Reserve some Ids for compatible expansion
tReserved7 = bootstrapType("_reserved1", (*struct{ r7 int })(nil), 9)
tReserved6 = bootstrapType("_reserved1", (*struct{ r6 int })(nil), 10)
tReserved5 = bootstrapType("_reserved1", (*struct{ r5 int })(nil), 11)
tReserved4 = bootstrapType("_reserved1", (*struct{ r4 int })(nil), 12)
tReserved3 = bootstrapType("_reserved1", (*struct{ r3 int })(nil), 13)
tReserved2 = bootstrapType("_reserved1", (*struct{ r2 int })(nil), 14)
tReserved1 = bootstrapType("_reserved1", (*struct{ r1 int })(nil), 15)
)
// Predefined because it's needed by the Decoder
var tWireType = mustGetTypeInfo(reflect.TypeOf(wireType{})).id
var wireTypeUserInfo *userTypeInfo // userTypeInfo of (*wireType)
func init() {
// Some magic numbers to make sure there are no surprises.
checkId(16, tWireType)
checkId(17, mustGetTypeInfo(reflect.TypeOf(arrayType{})).id)
checkId(18, mustGetTypeInfo(reflect.TypeOf(CommonType{})).id)
checkId(19, mustGetTypeInfo(reflect.TypeOf(sliceType{})).id)
checkId(20, mustGetTypeInfo(reflect.TypeOf(structType{})).id)
checkId(21, mustGetTypeInfo(reflect.TypeOf(fieldType{})).id)
checkId(23, mustGetTypeInfo(reflect.TypeOf(mapType{})).id)
builtinIdToType = make(map[typeId]gobType)
for k, v := range idToType {
builtinIdToType[k] = v
}
// Move the id space upwards to allow for growth in the predefined world
// without breaking existing files.
if nextId > firstUserId {
panic(fmt.Sprintln("nextId too large:", nextId))
}
nextId = firstUserId
registerBasics()
wireTypeUserInfo = userType(reflect.TypeOf((*wireType)(nil)))
}
// Array type
type arrayType struct {
CommonType
Elem typeId
Len int
}
func newArrayType(name string) *arrayType {
a := &arrayType{CommonType{Name: name}, 0, 0}
return a
}
func (a *arrayType) init(elem gobType, len int) {
// Set our type id before evaluating the element's, in case it's our own.
setTypeId(a)
a.Elem = elem.id()
a.Len = len
}
func (a *arrayType) safeString(seen map[typeId]bool) string {
if seen[a.Id] {
return a.Name
}
seen[a.Id] = true
return fmt.Sprintf("[%d]%s", a.Len, a.Elem.gobType().safeString(seen))
}
func (a *arrayType) string() string { return a.safeString(make(map[typeId]bool)) }
// GobEncoder type (something that implements the GobEncoder interface)
type gobEncoderType struct {
CommonType
}
func newGobEncoderType(name string) *gobEncoderType {
g := &gobEncoderType{CommonType{Name: name}}
setTypeId(g)
return g
}
func (g *gobEncoderType) safeString(seen map[typeId]bool) string {
return g.Name
}
func (g *gobEncoderType) string() string { return g.Name }
// Map type
type mapType struct {
CommonType
Key typeId
Elem typeId
}
func newMapType(name string) *mapType {
m := &mapType{CommonType{Name: name}, 0, 0}
return m
}
func (m *mapType) init(key, elem gobType) {
// Set our type id before evaluating the element's, in case it's our own.
setTypeId(m)
m.Key = key.id()
m.Elem = elem.id()
}
func (m *mapType) safeString(seen map[typeId]bool) string {
if seen[m.Id] {
return m.Name
}
seen[m.Id] = true
key := m.Key.gobType().safeString(seen)
elem := m.Elem.gobType().safeString(seen)
return fmt.Sprintf("map[%s]%s", key, elem)
}
func (m *mapType) string() string { return m.safeString(make(map[typeId]bool)) }
// Slice type
type sliceType struct {
CommonType
Elem typeId
}
func newSliceType(name string) *sliceType {
s := &sliceType{CommonType{Name: name}, 0}
return s
}
func (s *sliceType) init(elem gobType) {
// Set our type id before evaluating the element's, in case it's our own.
setTypeId(s)
// See the comments about ids in newTypeObject. Only slices and
// structs have mutual recursion.
if elem.id() == 0 {
setTypeId(elem)
}
s.Elem = elem.id()
}
func (s *sliceType) safeString(seen map[typeId]bool) string {
if seen[s.Id] {
return s.Name
}
seen[s.Id] = true
return fmt.Sprintf("[]%s", s.Elem.gobType().safeString(seen))
}
func (s *sliceType) string() string { return s.safeString(make(map[typeId]bool)) }
// Struct type
type fieldType struct {
Name string
Id typeId
}
type structType struct {
CommonType
Field []*fieldType
}
func (s *structType) safeString(seen map[typeId]bool) string {
if s == nil {
return "<nil>"
}
if _, ok := seen[s.Id]; ok {
return s.Name
}
seen[s.Id] = true
str := s.Name + " = struct { "
for _, f := range s.Field {
str += fmt.Sprintf("%s %s; ", f.Name, f.Id.gobType().safeString(seen))
}
str += "}"
return str
}
func (s *structType) string() string { return s.safeString(make(map[typeId]bool)) }
func newStructType(name string) *structType {
s := &structType{CommonType{Name: name}, nil}
// For historical reasons we set the id here rather than init.
// See the comment in newTypeObject for details.
setTypeId(s)
return s
}
// newTypeObject allocates a gobType for the reflection type rt.
// Unless ut represents a GobEncoder, rt should be the base type
// of ut.
// This is only called from the encoding side. The decoding side
// works through typeIds and userTypeInfos alone.
func newTypeObject(name string, ut *userTypeInfo, rt reflect.Type) (gobType, error) {
// Does this type implement GobEncoder?
if ut.externalEnc != 0 {
return newGobEncoderType(name), nil
}
var err error
var type0, type1 gobType
defer func() {
if err != nil {
delete(types, rt)
}
}()
// Install the top-level type before the subtypes (e.g. struct before
// fields) so recursive types can be constructed safely.
switch t := rt; t.Kind() {
// All basic types are easy: they are predefined.
case reflect.Bool:
return tBool.gobType(), nil
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
return tInt.gobType(), nil
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
return tUint.gobType(), nil
case reflect.Float32, reflect.Float64:
return tFloat.gobType(), nil
case reflect.Complex64, reflect.Complex128:
return tComplex.gobType(), nil
case reflect.String:
return tString.gobType(), nil
case reflect.Interface:
return tInterface.gobType(), nil
case reflect.Array:
at := newArrayType(name)
types[rt] = at
type0, err = getBaseType("", t.Elem())
if err != nil {
return nil, err
}
// Historical aside:
// For arrays, maps, and slices, we set the type id after the elements
// are constructed. This is to retain the order of type id allocation after
// a fix made to handle recursive types, which changed the order in
// which types are built. Delaying the setting in this way preserves
// type ids while allowing recursive types to be described. Structs,
// done below, were already handling recursion correctly so they
// assign the top-level id before those of the field.
at.init(type0, t.Len())
return at, nil
case reflect.Map:
mt := newMapType(name)
types[rt] = mt
type0, err = getBaseType("", t.Key())
if err != nil {
return nil, err
}
type1, err = getBaseType("", t.Elem())
if err != nil {
return nil, err
}
mt.init(type0, type1)
return mt, nil
case reflect.Slice:
// []byte == []uint8 is a special case
if t.Elem().Kind() == reflect.Uint8 {
return tBytes.gobType(), nil
}
st := newSliceType(name)
types[rt] = st
type0, err = getBaseType(t.Elem().Name(), t.Elem())
if err != nil {
return nil, err
}
st.init(type0)
return st, nil
case reflect.Struct:
st := newStructType(name)
types[rt] = st
idToType[st.id()] = st
for i := 0; i < t.NumField(); i++ {
f := t.Field(i)
if !isSent(&f) {
continue
}
typ := userType(f.Type).base
tname := typ.Name()
if tname == "" {
t := userType(f.Type).base
tname = t.String()
}
gt, err := getBaseType(tname, f.Type)
if err != nil {
return nil, err
}
// Some mutually recursive types can cause us to be here while
// still defining the element. Fix the element type id here.
// We could do this more neatly by setting the id at the start of
// building every type, but that would break binary compatibility.
if gt.id() == 0 {
setTypeId(gt)
}
st.Field = append(st.Field, &fieldType{f.Name, gt.id()})
}
return st, nil
default:
return nil, errors.New("gob NewTypeObject can't handle type: " + rt.String())
}
}
// isDeprecated reports whether this is a deprecated field, and thus should
// not be included during encoding.
func isDeprecated(field *reflect.StructField) bool {
if t, ok := field.Tag.Lookup(tagName); ok {
return t == tagDeprecated
}
return false
}
// isExported reports whether this is an exported - upper case - name.
func isExported(name string) bool {
rune, _ := utf8.DecodeRuneInString(name)
return unicode.IsUpper(rune)
}
// isSent reports whether this struct field is to be transmitted.
// It will be transmitted only if it is exported and not a chan or func field
// or pointer to chan or func.
func isSent(field *reflect.StructField) bool {
if !isExported(field.Name) || isDeprecated(field) {
return false
}
// If the field is a chan or func or pointer thereto, don't send it.
// That is, treat it like an unexported field.
typ := field.Type
for typ.Kind() == reflect.Ptr {
typ = typ.Elem()
}
if typ.Kind() == reflect.Chan || typ.Kind() == reflect.Func {
return false
}
return true
}
// getBaseType returns the Gob type describing the given reflect.Type's base type.
// typeLock must be held.
func getBaseType(name string, rt reflect.Type) (gobType, error) {
ut := userType(rt)
return getType(name, ut, ut.base)
}
// getType returns the Gob type describing the given reflect.Type.
// Should be called only when handling GobEncoders/Decoders,
// which may be pointers. All other types are handled through the
// base type, never a pointer.
// typeLock must be held.
func getType(name string, ut *userTypeInfo, rt reflect.Type) (gobType, error) {
typ, present := types[rt]
if present {
return typ, nil
}
typ, err := newTypeObject(name, ut, rt)
if err == nil {
types[rt] = typ
}
return typ, err
}
func checkId(want, got typeId) {
if want != got {
fmt.Fprintf(os.Stderr, "checkId: %d should be %d\n", int(got), int(want))
panic("bootstrap type wrong id: " + got.name() + " " + got.string() + " not " + want.string())
}
}
// used for building the basic types; called only from init(). the incoming
// interface always refers to a pointer.
func bootstrapType(name string, e interface{}, expect typeId) typeId {
rt := reflect.TypeOf(e).Elem()
_, present := types[rt]
if present {
panic("bootstrap type already present: " + name + ", " + rt.String())
}
typ := &CommonType{Name: name}
types[rt] = typ
setTypeId(typ)
checkId(expect, nextId)
userType(rt) // might as well cache it now
return nextId
}
// Representation of the information we send and receive about this type.
// Each value we send is preceded by its type definition: an encoded int.
// However, the very first time we send the value, we first send the pair
// (-id, wireType).
// For bootstrapping purposes, we assume that the recipient knows how
// to decode a wireType; it is exactly the wireType struct here, interpreted
// using the gob rules for sending a structure, except that we assume the
// ids for wireType and structType etc. are known. The relevant pieces
// are built in encode.go's init() function.
// To maintain binary compatibility, if you extend this type, always put
// the new fields last.
type wireType struct {
ArrayT *arrayType
SliceT *sliceType
StructT *structType
MapT *mapType
GobEncoderT *gobEncoderType
BinaryMarshalerT *gobEncoderType
TextMarshalerT *gobEncoderType
}
func (w *wireType) string() string {
const unknown = "unknown type"
if w == nil {
return unknown
}
switch {
case w.ArrayT != nil:
return w.ArrayT.Name
case w.SliceT != nil:
return w.SliceT.Name
case w.StructT != nil:
return w.StructT.Name
case w.MapT != nil:
return w.MapT.Name
case w.GobEncoderT != nil:
return w.GobEncoderT.Name
case w.BinaryMarshalerT != nil:
return w.BinaryMarshalerT.Name
case w.TextMarshalerT != nil:
return w.TextMarshalerT.Name
}
return unknown
}
type typeInfo struct {
id typeId
encInit sync.Mutex // protects creation of encoder
encoder atomic.Value // *encEngine
wire *wireType
}
// typeInfoMap is an atomic pointer to map[reflect.Type]*typeInfo.
// It's updated copy-on-write. Readers just do an atomic load
// to get the current version of the map. Writers make a full copy of
// the map and atomically update the pointer to point to the new map.
// Under heavy read contention, this is significantly faster than a map
// protected by a mutex.
var typeInfoMap atomic.Value
func lookupTypeInfo(rt reflect.Type) *typeInfo {
m, _ := typeInfoMap.Load().(map[reflect.Type]*typeInfo)
return m[rt]
}
func getTypeInfo(ut *userTypeInfo) (*typeInfo, error) {
rt := ut.base
if ut.externalEnc != 0 {
// We want the user type, not the base type.
rt = ut.user
}
if info := lookupTypeInfo(rt); info != nil {
return info, nil
}
return buildTypeInfo(ut, rt)
}
// buildTypeInfo constructs the type information for the type
// and stores it in the type info map.
func buildTypeInfo(ut *userTypeInfo, rt reflect.Type) (*typeInfo, error) {
typeLock.Lock()
defer typeLock.Unlock()
if info := lookupTypeInfo(rt); info != nil {
return info, nil
}
gt, err := getBaseType(rt.Name(), rt)
if err != nil {
return nil, err
}
info := &typeInfo{id: gt.id()}
if ut.externalEnc != 0 {
userType, err := getType(rt.Name(), ut, rt)
if err != nil {
return nil, err
}
gt := userType.id().gobType().(*gobEncoderType)
switch ut.externalEnc {
case xGob:
info.wire = &wireType{GobEncoderT: gt}
case xBinary:
info.wire = &wireType{BinaryMarshalerT: gt}
case xText:
info.wire = &wireType{TextMarshalerT: gt}
}
rt = ut.user
} else {
t := info.id.gobType()
switch typ := rt; typ.Kind() {
case reflect.Array:
info.wire = &wireType{ArrayT: t.(*arrayType)}
case reflect.Map:
info.wire = &wireType{MapT: t.(*mapType)}
case reflect.Slice:
// []byte == []uint8 is a special case handled separately
if typ.Elem().Kind() != reflect.Uint8 {
info.wire = &wireType{SliceT: t.(*sliceType)}
}
case reflect.Struct:
info.wire = &wireType{StructT: t.(*structType)}
}
}
// Create new map with old contents plus new entry.
newm := make(map[reflect.Type]*typeInfo)
m, _ := typeInfoMap.Load().(map[reflect.Type]*typeInfo)
for k, v := range m {
newm[k] = v
}
newm[rt] = info
typeInfoMap.Store(newm)
return info, nil
}
// Called only when a panic is acceptable and unexpected.
func mustGetTypeInfo(rt reflect.Type) *typeInfo {
t, err := getTypeInfo(userType(rt))
if err != nil {
panic("getTypeInfo: " + err.Error())
}
return t
}
// GobEncoder is the interface describing data that provides its own
// representation for encoding values for transmission to a GobDecoder.
// A type that implements GobEncoder and GobDecoder has complete
// control over the representation of its data and may therefore
// contain things such as private fields, channels, and functions,
// which are not usually transmissible in gob streams.
//
// Note: Since gobs can be stored permanently, It is good design
// to guarantee the encoding used by a GobEncoder is stable as the
// software evolves. For instance, it might make sense for GobEncode
// to include a version number in the encoding.
type GobEncoder interface {
// GobEncode returns a byte slice representing the encoding of the
// receiver for transmission to a GobDecoder, usually of the same
// concrete type.
GobEncode() ([]byte, error)
}
// GobDecoder is the interface describing data that provides its own
// routine for decoding transmitted values sent by a GobEncoder.
type GobDecoder interface {
// GobDecode overwrites the receiver, which must be a pointer,
// with the value represented by the byte slice, which was written
// by GobEncode, usually for the same concrete type.
GobDecode([]byte) error
}
var (
registerLock sync.RWMutex
nameToConcreteType = make(map[string]reflect.Type)
concreteTypeToName = make(map[reflect.Type]string)
)
// RegisterName is like Register but uses the provided name rather than the
// type's default.
func RegisterName(name string, value interface{}) {
if name == "" {
// reserved for nil
panic("attempt to register empty name")
}
registerLock.Lock()
defer registerLock.Unlock()
ut := userType(reflect.TypeOf(value))
// Check for incompatible duplicates. The name must refer to the
// same user type, and vice versa.
if t, ok := nameToConcreteType[name]; ok && t != ut.user {
panic(fmt.Sprintf("gob: registering duplicate types for %q: %s != %s", name, t, ut.user))
}
if n, ok := concreteTypeToName[ut.base]; ok && n != name {
panic(fmt.Sprintf("gob: registering duplicate names for %s: %q != %q", ut.user, n, name))
}
// Store the name and type provided by the user....
nameToConcreteType[name] = reflect.TypeOf(value)
// but the flattened type in the type table, since that's what decode needs.
concreteTypeToName[ut.base] = name
}
// Register records a type, identified by a value for that type, under its
// internal type name. That name will identify the concrete type of a value
// sent or received as an interface variable. Only types that will be
// transferred as implementations of interface values need to be registered.
// Expecting to be used only during initialization, it panics if the mapping
// between types and names is not a bijection.
func Register(value interface{}) {
// Default to printed representation for unnamed types
rt := reflect.TypeOf(value)
name := rt.String()
// But for named types (or pointers to them), qualify with import path (but see inner comment).
// Dereference one pointer looking for a named type.
star := ""
if rt.Name() == "" {
if pt := rt; pt.Kind() == reflect.Ptr {
star = "*"
// NOTE: The following line should be rt = pt.Elem() to implement
// what the comment above claims, but fixing it would break compatibility
// with existing gobs.
//
// Given package p imported as "full/p" with these definitions:
// package p
// type T1 struct { ... }
// this table shows the intended and actual strings used by gob to
// name the types:
//
// Type Correct string Actual string
//
// T1 full/p.T1 full/p.T1
// *T1 *full/p.T1 *p.T1
//
// The missing full path cannot be fixed without breaking existing gob decoders.
rt = pt
}
}
if rt.Name() != "" {
if rt.PkgPath() == "" {
name = star + rt.Name()
} else {
name = star + rt.PkgPath() + "." + rt.Name()
}
}
RegisterName(name, value)
}
func registerBasics() {
Register(int(0))
Register(int8(0))
Register(int16(0))
Register(int32(0))
Register(int64(0))
Register(uint(0))
Register(uint8(0))
Register(uint16(0))
Register(uint32(0))
Register(uint64(0))
Register(float32(0))
Register(float64(0))
Register(complex64(0i))
Register(complex128(0i))
Register(uintptr(0))
Register(false)
Register("")
Register([]byte(nil))
Register([]int(nil))
Register([]int8(nil))
Register([]int16(nil))
Register([]int32(nil))
Register([]int64(nil))
Register([]uint(nil))
Register([]uint8(nil))
Register([]uint16(nil))
Register([]uint32(nil))
Register([]uint64(nil))
Register([]float32(nil))
Register([]float64(nil))
Register([]complex64(nil))
Register([]complex128(nil))
Register([]uintptr(nil))
Register([]bool(nil))
Register([]string(nil))
}