-
Notifications
You must be signed in to change notification settings - Fork 1
/
generate.py
119 lines (100 loc) · 3.78 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import argparse
import os
import time
import dgl
import numpy as np
import tensorboard_logger as tb_logger
import torch
from gcc.contrastive.criterions import NCESoftmaxLoss, NCESoftmaxLossNS
from gcc.contrastive.memory_moco import MemoryMoCo
from gcc.datasets import (
LoadBalanceGraphDataset,
NodeClassificationDataset,
NodeClassificationDatasetLabeled,
worker_init_fn,
)
from gcc.datasets.data_util import batcher
from gcc.models import GraphEncoder
from gcc.utils.misc import AverageMeter, adjust_learning_rate, warmup_linear
def test_moco(train_loader, model, opt):
"""
one epoch training for moco
"""
model.eval()
emb_list = []
for idx, batch in enumerate(train_loader):
graph_q, graph_k = batch
bsz = graph_q.batch_size
graph_q.to(opt.device)
graph_k.to(opt.device)
with torch.no_grad():
feat_q = model(graph_q)
feat_k = model(graph_k)
assert feat_q.shape == (bsz, opt.hidden_size)
emb_list.append(((feat_q + feat_k) / 2).detach().cpu())
return torch.cat(emb_list)
def main(args_test):
if os.path.isfile(args_test.load_path):
print("=> loading checkpoint '{}'".format(args_test.load_path))
checkpoint = torch.load(args_test.load_path, map_location="cpu")
print(
"=> loaded successfully '{}' (epoch {})".format(
args_test.load_path, checkpoint["epoch"]
)
)
else:
print("=> no checkpoint found at '{}'".format(args_test.load_path))
args = checkpoint["opt"]
assert args_test.gpu is None or torch.cuda.is_available()
print("Use GPU: {} for generation".format(args_test.gpu))
args.gpu = args_test.gpu
args.device = torch.device("cpu") if args.gpu is None else torch.device(args.gpu)
train_dataset = NodeClassificationDataset(
dataset=args_test.dataset,
rw_hops=args.rw_hops,
subgraph_size=args.subgraph_size,
restart_prob=args.restart_prob,
positional_embedding_size=args.positional_embedding_size,
)
args.batch_size = len(train_dataset)
train_loader = torch.utils.data.DataLoader(
dataset=train_dataset,
batch_size=args.batch_size,
collate_fn=batcher(),
shuffle=False,
num_workers=args.num_workers,
)
# create model and optimizer
model = GraphEncoder(
positional_embedding_size=args.positional_embedding_size,
max_node_freq=args.max_node_freq,
max_edge_freq=args.max_edge_freq,
max_degree=args.max_degree,
freq_embedding_size=args.freq_embedding_size,
degree_embedding_size=args.degree_embedding_size,
output_dim=args.hidden_size,
node_hidden_dim=args.hidden_size,
edge_hidden_dim=args.hidden_size,
num_layers=args.num_layer,
num_step_set2set=args.set2set_iter,
num_layer_set2set=args.set2set_lstm_layer,
gnn_model=args.model,
norm=args.norm,
degree_input=True,
)
model = model.to(args.device)
model.load_state_dict(checkpoint["model"])
del checkpoint
emb = test_moco(train_loader, model, args)
np.save(os.path.join(args.model_folder, args_test.dataset), emb.numpy())
if __name__ == "__main__":
parser = argparse.ArgumentParser("argument for training")
# fmt: off
parser.add_argument("--load-path", type=str, help="path to load model")
parser.add_argument("--dataset", type=str, default="dgl",
choices=["dgl", "usa_airport", "brazil_airport", "europe_airport", "h-index", "wisconsin",
"DD68", "DD242", "DD687",
"texas", "cornell"])
parser.add_argument("--gpu", default=None, type=int, help="GPU id to use.")
# fmt: on
main(parser.parse_args())