forked from akshitac8/Generative_MLZSL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
classifier.py
237 lines (223 loc) · 9.5 KB
/
classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri May 8 21:56:19 2020
@author: akshitac8
"""
import torch
import torch.nn as nn
from torch.autograd import Variable
import torch.optim as optim
import numpy as np
import util as util
import torch.nn as nn
from sklearn.preprocessing import MinMaxScaler
import sys
import copy
import json
import csv
import os
import torch.nn.functional as F
from config import opt
import networks.CLF_model as model
import random
import torch.backends.cudnn as cudnn
from sklearn.metrics import average_precision_score, f1_score, precision_score, recall_score
class CLASSIFIER:
def __init__(self, _train_X, _train_Y, data_loader, _nclass, _cuda, opt, _lr=0.001, _beta1=0.5, _nepoch=20, _batch_size=100, generalized=True):
self.train_X = _train_X
self.train_Y = _train_Y
self.train_feature = data_loader.train_feature
self.train_label = data_loader.train_label
self.test_seen_unseen_feature = data_loader.test_seen_unseen_feature
self.test_seen_unseen_label = data_loader.test_seen_unseen_label
self.test_unseen_feature = data_loader.test_unseen_feature
self.test_unseen_label = data_loader.test_unseen_label
self.seenclasses = data_loader.seenclasses
self.unseenclasses = data_loader.unseenclasses
self.batch_size = _batch_size
self.nepoch = _nepoch
self.nclass = _nclass
self.input_dim = _train_X.size(1)
self.cuda = _cuda
self.model = LINEAR_LOGSOFTMAX(self.input_dim, self.nclass)
self.model.apply(util.weights_init)
self.input = torch.FloatTensor(_batch_size, self.input_dim)
self.label = torch.LongTensor(_batch_size, self.nclass)
self.lr = _lr
self.beta1 = _beta1
# setup optimizer
self.optimizer = optim.Adam(self.model.parameters(), lr=_lr, betas=(_beta1, 0.999))
if self.cuda:
self.model.cuda()
self.input = self.input.cuda()
self.label = self.label.cuda()
self.test_seen_unseen_feature = self.test_seen_unseen_feature.cuda()
self.test_seen_unseen_label = self.test_seen_unseen_label.cuda()
self.test_unseen_feature = self.test_unseen_feature.cuda()
self.test_unseen_label = self.test_unseen_label.cuda()
self.index_in_epoch = 0
self.epochs_completed = 0
self.ntrain = self.train_X.size()[0]
if generalized:
self.sum_F1_scores_seen_unseen, self.sum_f1_best_model = self.fit()
else:
self.sum_F1_scores, self.sum_f1_best_model = self.fit_zsl()
def fit(self):
best_f1 = 0
sum_f1_ap=0
for epoch in range(self.nepoch):
for i in range(0, self.ntrain, self.batch_size):
self.model.zero_grad()
batch_input, batch_label = self.next_batch(self.batch_size)
self.input.copy_(batch_input)
self.label.copy_(batch_label)
output = self.model(self.input)
loss = F.binary_cross_entropy_with_logits(output, self.label.float()).cuda()
loss.backward()
self.optimizer.step()
scores_su = self.val(self.test_seen_unseen_feature, self.test_seen_unseen_label)
sum_ = scores_su[4]*100 + scores_su[0]*100
if sum_ > sum_f1_ap:
sum_f1_ap = sum_
sum_F1_scores_seen_unseen = scores_su
sum_f1_best_model = copy.deepcopy(self.model)
return sum_F1_scores_seen_unseen, sum_f1_best_model
def fit_zsl(self):
best_f1 = 0
sum_f1_ap = 0
for epoch in range(self.nepoch):
for i in range(0, self.ntrain, self.batch_size):
self.model.zero_grad()
batch_input, batch_label = self.next_batch(self.batch_size)
self.input.copy_(batch_input)
self.label.copy_(batch_label)
output = self.model(self.input)
loss = F.binary_cross_entropy_with_logits(output, self.label.float()).cuda()
loss.backward()
self.optimizer.step()
_scores = self.val(self.test_unseen_feature, self.test_unseen_label)
sum_ = _scores[4]*100 + _scores[0]*100
if sum_ > sum_f1_ap:
sum_f1_ap = sum_
sum_F1_scores = _scores
sum_f1_best_model = copy.deepcopy(self.model)
return sum_F1_scores, sum_f1_best_model
def next_batch(self, batch_size):
start = self.index_in_epoch
# shuffle the data at the first epoch
if self.epochs_completed == 0 and start == 0:
perm = torch.randperm(self.ntrain)
self.train_X = self.train_X[perm]
self.train_Y = self.train_Y[perm]
# the last batch
if start + batch_size > self.ntrain:
self.epochs_completed += 1
rest_num_examples = self.ntrain - start
if rest_num_examples > 0:
X_rest_part = self.train_X[start:self.ntrain]
Y_rest_part = self.train_Y[start:self.ntrain]
# shuffle the data
perm = torch.randperm(self.ntrain)
self.train_X = self.train_X[perm]
self.train_Y = self.train_Y[perm]
# start next epoch
start = 0
self.index_in_epoch = batch_size - rest_num_examples
end = self.index_in_epoch
X_new_part = self.train_X[start:end]
Y_new_part = self.train_Y[start:end]
if rest_num_examples > 0:
return torch.cat((X_rest_part, X_new_part), 0), torch.cat((Y_rest_part, Y_new_part), 0)
else:
return X_new_part, Y_new_part
else:
self.index_in_epoch += batch_size
end = self.index_in_epoch
# from index start to index end-1
return self.train_X[start:end], self.train_Y[start:end]
def val(self, test_X, test_label):
start = 0
ntest = test_X.size()[0]
outputs = []
labels = []
for i in range(0, ntest, self.batch_size):
end = min(ntest, start+self.batch_size)
with torch.no_grad():
if self.cuda:
output = self.model(test_X[start:end].cuda())
else:
output = self.model(test_X[start:end])
label = test_label[start:end]
outputs.extend(output)
labels.extend(label)
start = end
outputs = torch.stack(outputs)
labels = torch.stack(labels)
outputs_ap = outputs.clone()
outputs_3 = outputs.clone()
outputs_5 = outputs.clone()
ap = self.compute_AP(outputs_ap, labels)
f1_3, p_3, r_3 = self.compute_F1(outputs_3, labels, 'overall', k_val=3)
f1_5, p_5, r_5 = self.compute_F1(outputs_5, labels, 'overall', k_val=5)
scores = (torch.mean(ap), torch.mean(f1_3), torch.mean(p_3), torch.mean(r_3), torch.mean(f1_5), torch.mean(p_5), torch.mean(r_5))
return scores
def compute_AP(self, predictions, labels):
## cuda ap computation
num_class = predictions.size(1)
ap = torch.zeros(num_class).cuda()
for idx_cls in range(num_class):
prediction = predictions[:, idx_cls]
label = labels[:, idx_cls]
mask = label.abs() == 1
if (label > 0).sum() == 0:
continue
binary_label = torch.clamp(label[mask], min=0, max=1)
sorted_pred, sort_idx = prediction[mask].sort(descending=True)
sorted_label = binary_label[sort_idx]
tmp = (sorted_label==1).float()
tp = tmp.cumsum(0)
fp = (sorted_label != 1).float().cumsum(0)
num_pos = binary_label.sum()
rec = tp/num_pos
prec = tp/(tp+fp)
ap_cls = (tmp*prec).sum()/num_pos
ap[idx_cls].copy_(ap_cls)
return ap
def compute_F1(self, predictions, labels, mode_F1, k_val):
## cuda F1 computation
idx = predictions.topk(dim=1, k=k_val)[1]
predictions.fill_(0)
predictions.scatter_(dim=1,index=idx,src=torch.ones(predictions.size(0),k_val).cuda())
if mode_F1 == 'overall':
# print('evaluation overall!! cannot decompose into classes F1 score')
mask = predictions == 1
TP = (labels[mask] == 1).sum().float()
tpfp = mask.sum().float()
tpfn = (labels == 1).sum().float()
p = TP/ tpfp
r = TP/tpfn
f1 = 2*p*r/(p+r)
else:
num_class = predictions.shape[1]
# print('evaluation per classes')
f1 = np.zeros(num_class)
p = np.zeros(num_class)
r = np.zeros(num_class)
for idx_cls in range(num_class):
prediction = np.squeeze(predictions[:, idx_cls])
label = np.squeeze(labels[:, idx_cls])
if np.sum(label > 0) == 0:
continue
binary_label = np.clip(label, 0, 1)
f1[idx_cls] = f1_score(binary_label, prediction)
p[idx_cls] = precision_score(binary_label, prediction)
r[idx_cls] = recall_score(binary_label, prediction)
return f1, p, r
class LINEAR_LOGSOFTMAX(nn.Module):
def __init__(self, input_dim, nclass):
super(LINEAR_LOGSOFTMAX, self).__init__()
self.fc1 = nn.Linear(input_dim, nclass)
def forward(self, x):
o = self.fc1(x)
return o