We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Heamy does not seem to support sparse matrices at the moment.
When I create a dataset where X_train and X_test are scipy sparse matrices, I get the following error:
X_train
X_test
--------------------------------------------------------------------------- AttributeError Traceback (most recent call last) <ipython-input-37-cc350d1da8a6> in <module>() 1 pipeline = ModelsPipeline(*classifiers) ----> 2 pipeline.stack() /home/agrigorev/anaconda2/lib/python2.7/site-packages/heamy/pipeline.pyc in stack(self, k, stratify, shuffle, seed, full_test, add_diff) 131 132 for model in self.models: --> 133 result = model.stack(k=k, stratify=stratify, shuffle=shuffle, seed=seed, full_test=full_test) 134 train_df = pd.DataFrame(result.X_train, columns=generate_columns(result.X_train, model.name)) 135 test_df = pd.DataFrame(result.X_test, columns=generate_columns(result.X_test, model.name)) /home/agrigorev/anaconda2/lib/python2.7/site-packages/heamy/estimator.pyc in stack(self, k, stratify, shuffle, seed, full_test) 245 if self.use_cache: 246 pdict = {'k': k, 'stratify': stratify, 'shuffle': shuffle, 'seed': seed, 'full_test': full_test} --> 247 dhash = self._dhash(pdict) 248 c = Cache(dhash, prefix='s') 249 if c.available: /home/agrigorev/anaconda2/lib/python2.7/site-packages/heamy/estimator.pyc in _dhash(self, params) 132 """Get hash of the dictionary object.""" 133 m = hashlib.new('md5') --> 134 m.update(self.hash.encode('utf-8')) 135 for key in sorted(params.keys()): 136 h_string = ('%s-%s' % (key, params[key])).encode('utf-8') /home/agrigorev/anaconda2/lib/python2.7/site-packages/heamy/estimator.pyc in hash(self) 78 m.update(h_string) 79 m.update(self.estimator_name.encode('utf-8')) ---> 80 m.update(self.dataset.hash.encode('utf-8')) 81 82 if not self._is_class: /home/agrigorev/anaconda2/lib/python2.7/site-packages/heamy/dataset.pyc in hash(self) 235 m = hashlib.new('md5') 236 if self._preprocessor is None: --> 237 m.update(numpy_buffer(self._X_train)) 238 m.update(numpy_buffer(self._y_train)) 239 if self._X_test is not None: /home/agrigorev/anaconda2/lib/python2.7/site-packages/heamy/cache.pyc in numpy_buffer(ndarray) 55 ndarray = ndarray.values 56 ---> 57 if ndarray.flags.c_contiguous: 58 obj_c_contiguous = ndarray 59 elif ndarray.flags.f_contiguous: /home/agrigorev/anaconda2/lib/python2.7/site-packages/scipy/sparse/base.pyc in __getattr__(self, attr) 523 return self.getnnz() 524 else: --> 525 raise AttributeError(attr + " not found") 526 527 def transpose(self): AttributeError: flags not found
The matrices are obtained via DictVectorizer from sklearn
DictVectorizer
As a temporary solution, I use X.toarray()
X.toarray()
The text was updated successfully, but these errors were encountered:
No branches or pull requests
Heamy does not seem to support sparse matrices at the moment.
When I create a dataset where
X_train
andX_test
are scipy sparse matrices, I get the following error:The matrices are obtained via
DictVectorizer
from sklearnAs a temporary solution, I use
X.toarray()
The text was updated successfully, but these errors were encountered: