-
Notifications
You must be signed in to change notification settings - Fork 44
/
main_alias.cpp
422 lines (341 loc) · 13.1 KB
/
main_alias.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
#include "platform.h"
#include <stdio.h>
#include <stdarg.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <assert.h>
#include "rans_byte.h"
static void panic(const char *fmt, ...)
{
va_list arg;
va_start(arg, fmt);
fputs("Error: ", stderr);
vfprintf(stderr, fmt, arg);
va_end(arg);
fputs("\n", stderr);
exit(1);
}
static uint8_t* read_file(char const* filename, size_t* out_size)
{
FILE* f = fopen(filename, "rb");
if (!f)
panic("file not found: %s\n", filename);
fseek(f, 0, SEEK_END);
size_t size = ftell(f);
fseek(f, 0, SEEK_SET);
uint8_t* buf = new uint8_t[size];
if (fread(buf, size, 1, f) != 1)
panic("read failed\n");
fclose(f);
if (out_size)
*out_size = size;
return buf;
}
// ---- Stats
struct SymbolStats
{
static const int LOG2NSYMS = 8;
static const int NSYMS = 1 << LOG2NSYMS;
uint32_t freqs[NSYMS];
uint32_t cum_freqs[NSYMS + 1];
// alias table
uint32_t divider[NSYMS];
uint32_t slot_adjust[NSYMS*2];
uint32_t slot_freqs[NSYMS*2];
uint8_t sym_id[NSYMS*2];
// for encoder
uint32_t* alias_remap;
SymbolStats() : alias_remap(0) {}
~SymbolStats() { delete[] alias_remap; }
void count_freqs(uint8_t const* in, size_t nbytes);
void calc_cum_freqs();
void normalize_freqs(uint32_t target_total);
void make_alias_table();
};
void SymbolStats::count_freqs(uint8_t const* in, size_t nbytes)
{
for (int i=0; i < NSYMS; i++)
freqs[i] = 0;
for (size_t i=0; i < nbytes; i++)
freqs[in[i]]++;
}
void SymbolStats::calc_cum_freqs()
{
cum_freqs[0] = 0;
for (int i=0; i < NSYMS; i++)
cum_freqs[i+1] = cum_freqs[i] + freqs[i];
}
void SymbolStats::normalize_freqs(uint32_t target_total)
{
assert(target_total >= NSYMS);
calc_cum_freqs();
uint32_t cur_total = cum_freqs[NSYMS];
// resample distribution based on cumulative freqs
for (int i = 1; i <= NSYMS; i++)
cum_freqs[i] = ((uint64_t)target_total * cum_freqs[i])/cur_total;
// if we nuked any non-0 frequency symbol to 0, we need to steal
// the range to make the frequency nonzero from elsewhere.
//
// this is not at all optimal, i'm just doing the first thing that comes to mind.
for (int i=0; i < NSYMS; i++) {
if (freqs[i] && cum_freqs[i+1] == cum_freqs[i]) {
// symbol i was set to zero freq
// find best symbol to steal frequency from (try to steal from low-freq ones)
uint32_t best_freq = ~0u;
int best_steal = -1;
for (int j=0; j < NSYMS; j++) {
uint32_t freq = cum_freqs[j+1] - cum_freqs[j];
if (freq > 1 && freq < best_freq) {
best_freq = freq;
best_steal = j;
}
}
assert(best_steal != -1);
// and steal from it!
if (best_steal < i) {
for (int j = best_steal + 1; j <= i; j++)
cum_freqs[j]--;
} else {
assert(best_steal > i);
for (int j = i + 1; j <= best_steal; j++)
cum_freqs[j]++;
}
}
}
// calculate updated freqs and make sure we didn't screw anything up
assert(cum_freqs[0] == 0 && cum_freqs[NSYMS] == target_total);
for (int i=0; i < NSYMS; i++) {
if (freqs[i] == 0)
assert(cum_freqs[i+1] == cum_freqs[i]);
else
assert(cum_freqs[i+1] > cum_freqs[i]);
// calc updated freq
freqs[i] = cum_freqs[i+1] - cum_freqs[i];
}
}
// Set up the alias table.
void SymbolStats::make_alias_table()
{
// verify that our distribution sum divides the number of buckets
uint32_t sum = cum_freqs[NSYMS];
assert(sum != 0 && (sum % NSYMS) == 0);
assert(sum >= NSYMS);
// target size in every bucket
uint32_t tgt_sum = sum / NSYMS;
// okay, prepare a sweep of vose's algorithm to distribute
// the symbols into buckets
uint32_t remaining[NSYMS];
for (int i=0; i < NSYMS; i++) {
remaining[i] = freqs[i];
divider[i] = tgt_sum;
sym_id[i*2 + 0] = i;
sym_id[i*2 + 1] = i;
}
// a "small" symbol is one with less than tgt_sum slots left to distribute
// a "large" symbol is one with >=tgt_sum slots.
// find initial small/large buckets
int cur_large = 0;
int cur_small = 0;
while (cur_large < NSYMS && remaining[cur_large] < tgt_sum)
cur_large++;
while (cur_small < NSYMS && remaining[cur_small] >= tgt_sum)
cur_small++;
// cur_small is definitely a small bucket
// next_small *might* be.
int next_small = cur_small + 1;
// top up small buckets from large buckets until we're done
// this might turn the large bucket we stole from into a small bucket itself.
while (cur_large < NSYMS && cur_small < NSYMS) {
// this bucket is split between cur_small and cur_large
sym_id[cur_small*2 + 0] = cur_large;
divider[cur_small] = remaining[cur_small];
// take the amount we took out of cur_large's bucket
remaining[cur_large] -= tgt_sum - divider[cur_small];
// if the large bucket is still large *or* we haven't processed it yet...
if (remaining[cur_large] >= tgt_sum || next_small <= cur_large) {
// find the next small bucket to process
cur_small = next_small;
while (cur_small < NSYMS && remaining[cur_small] >= tgt_sum)
cur_small++;
next_small = cur_small + 1;
} else // the large bucket we just made small is behind us, need to back-track
cur_small = cur_large;
// if cur_large isn't large anymore, forward to a bucket that is
while (cur_large < NSYMS && remaining[cur_large] < tgt_sum)
cur_large++;
}
// okay, we now have our alias mapping; distribute the code slots in order
uint32_t assigned[NSYMS] = { 0 };
alias_remap = new uint32_t[sum];
for (int i=0; i < NSYMS; i++) {
int j = sym_id[i*2 + 0];
uint32_t sym0_height = divider[i];
uint32_t sym1_height = tgt_sum - divider[i];
uint32_t base0 = assigned[i];
uint32_t base1 = assigned[j];
uint32_t cbase0 = cum_freqs[i] + base0;
uint32_t cbase1 = cum_freqs[j] + base1;
divider[i] = i*tgt_sum + sym0_height;
slot_freqs[i*2 + 1] = freqs[i];
slot_freqs[i*2 + 0] = freqs[j];
slot_adjust[i*2 + 1] = i*tgt_sum - base0;
slot_adjust[i*2 + 0] = i*tgt_sum - (base1 - sym0_height);
for (uint32_t k=0; k < sym0_height; k++)
alias_remap[cbase0 + k] = k + i*tgt_sum;
for (uint32_t k=0; k < sym1_height; k++)
alias_remap[cbase1 + k] = (k + sym0_height) + i*tgt_sum;
assigned[i] += sym0_height;
assigned[j] += sym1_height;
}
// check that each symbol got the number of slots it needed
for (int i=0; i < NSYMS; i++)
assert(assigned[i] == freqs[i]);
}
// ---- rANS encoding/decoding with alias table
static inline void RansEncPutAlias(RansState* r, uint8_t** pptr, SymbolStats* const syms, int s, uint32_t scale_bits)
{
// renormalize
uint32_t freq = syms->freqs[s];
RansState x = RansEncRenorm(*r, pptr, freq, scale_bits);
// x = C(s,x)
// NOTE: alias_remap here could be replaced with e.g. a binary search.
*r = ((x / freq) << scale_bits) + syms->alias_remap[(x % freq) + syms->cum_freqs[s]];
}
static inline uint32_t RansDecGetAlias(RansState* r, SymbolStats* const syms, uint32_t scale_bits)
{
RansState x = *r;
// figure out symbol via alias table
uint32_t mask = (1u << scale_bits) - 1; // constant for fixed scale_bits!
uint32_t xm = x & mask;
uint32_t bucket_id = xm >> (scale_bits - SymbolStats::LOG2NSYMS);
uint32_t bucket2 = bucket_id * 2;
if (xm < syms->divider[bucket_id])
bucket2++;
// s, x = D(x)
*r = syms->slot_freqs[bucket2] * (x >> scale_bits) + xm - syms->slot_adjust[bucket2];
return syms->sym_id[bucket2];
}
// ----
int main()
{
size_t in_size;
uint8_t* in_bytes = read_file("book1", &in_size);
static const uint32_t prob_bits = 16;
static const uint32_t prob_scale = 1 << prob_bits;
SymbolStats stats;
stats.count_freqs(in_bytes, in_size);
stats.normalize_freqs(prob_scale);
stats.make_alias_table();
static size_t out_max_size = 32<<20; // 32MB
uint8_t* out_buf = new uint8_t[out_max_size];
uint8_t* dec_bytes = new uint8_t[in_size];
// try rANS encode
uint8_t *rans_begin;
// ---- regular rANS encode/decode. Typical usage.
memset(dec_bytes, 0xcc, in_size);
printf("rANS encode:\n");
for (int run=0; run < 5; run++) {
double start_time = timer();
uint64_t enc_start_time = __rdtsc();
RansState rans;
RansEncInit(&rans);
uint8_t* ptr = out_buf + out_max_size; // *end* of output buffer
for (size_t i=in_size; i > 0; i--) { // NB: working in reverse!
int s = in_bytes[i-1];
RansEncPutAlias(&rans, &ptr, &stats, s, prob_bits);
}
RansEncFlush(&rans, &ptr);
rans_begin = ptr;
uint64_t enc_clocks = __rdtsc() - enc_start_time;
double enc_time = timer() - start_time;
printf("%"PRIu64" clocks, %.1f clocks/symbol (%5.1fMiB/s)\n", enc_clocks, 1.0 * enc_clocks / in_size, 1.0 * in_size / (enc_time * 1048576.0));
}
printf("rANS: %d bytes\n", (int) (out_buf + out_max_size - rans_begin));
// try rANS decode
for (int run=0; run < 5; run++) {
double start_time = timer();
uint64_t dec_start_time = __rdtsc();
RansState rans;
uint8_t* ptr = rans_begin;
RansDecInit(&rans, &ptr);
for (size_t i=0; i < in_size; i++) {
uint32_t s = RansDecGetAlias(&rans, &stats, prob_bits);
dec_bytes[i] = (uint8_t) s;
RansDecRenorm(&rans, &ptr);
}
uint64_t dec_clocks = __rdtsc() - dec_start_time;
double dec_time = timer() - start_time;
printf("%"PRIu64" clocks, %.1f clocks/symbol (%5.1fMiB/s)\n", dec_clocks, 1.0 * dec_clocks / in_size, 1.0 * in_size / (dec_time * 1048576.0));
}
// check decode results
if (memcmp(in_bytes, dec_bytes, in_size) == 0)
printf("decode ok!\n");
else
printf("ERROR: bad decoder!\n");
// ---- interleaved rANS encode/decode. This is the kind of thing you might do to optimize critical paths.
memset(dec_bytes, 0xcc, in_size);
// try interleaved rANS encode
printf("\ninterleaved rANS encode:\n");
for (int run=0; run < 5; run++) {
double start_time = timer();
uint64_t enc_start_time = __rdtsc();
RansState rans0, rans1;
RansEncInit(&rans0);
RansEncInit(&rans1);
uint8_t* ptr = out_buf + out_max_size; // *end* of output buffer
// odd number of bytes?
if (in_size & 1) {
int s = in_bytes[in_size - 1];
RansEncPutAlias(&rans0, &ptr, &stats, s, prob_bits);
}
for (size_t i=(in_size & ~1); i > 0; i -= 2) { // NB: working in reverse!
int s1 = in_bytes[i-1];
int s0 = in_bytes[i-2];
RansEncPutAlias(&rans1, &ptr, &stats, s1, prob_bits);
RansEncPutAlias(&rans0, &ptr, &stats, s0, prob_bits);
}
RansEncFlush(&rans1, &ptr);
RansEncFlush(&rans0, &ptr);
rans_begin = ptr;
uint64_t enc_clocks = __rdtsc() - enc_start_time;
double enc_time = timer() - start_time;
printf("%"PRIu64" clocks, %.1f clocks/symbol (%5.1fMiB/s)\n", enc_clocks, 1.0 * enc_clocks / in_size, 1.0 * in_size / (enc_time * 1048576.0));
}
printf("interleaved rANS: %d bytes\n", (int) (out_buf + out_max_size - rans_begin));
// try interleaved rANS decode
for (int run=0; run < 5; run++) {
double start_time = timer();
uint64_t dec_start_time = __rdtsc();
RansState rans0, rans1;
uint8_t* ptr = rans_begin;
RansDecInit(&rans0, &ptr);
RansDecInit(&rans1, &ptr);
for (size_t i=0; i < (in_size & ~1); i += 2) {
uint32_t s0 = RansDecGetAlias(&rans0, &stats, prob_bits);
uint32_t s1 = RansDecGetAlias(&rans1, &stats, prob_bits);
dec_bytes[i+0] = (uint8_t) s0;
dec_bytes[i+1] = (uint8_t) s1;
RansDecRenorm(&rans0, &ptr);
RansDecRenorm(&rans1, &ptr);
}
// last byte, if number of bytes was odd
if (in_size & 1) {
uint32_t s0 = RansDecGetAlias(&rans0, &stats, prob_bits);
dec_bytes[in_size - 1] = (uint8_t) s0;
RansDecRenorm(&rans0, &ptr);
}
uint64_t dec_clocks = __rdtsc() - dec_start_time;
double dec_time = timer() - start_time;
printf("%"PRIu64" clocks, %.1f clocks/symbol (%5.1fMB/s)\n", dec_clocks, 1.0 * dec_clocks / in_size, 1.0 * in_size / (dec_time * 1048576.0));
}
// check decode results
if (memcmp(in_bytes, dec_bytes, in_size) == 0)
printf("decode ok!\n");
else
printf("ERROR: bad decoder!\n");
delete[] out_buf;
delete[] dec_bytes;
delete[] in_bytes;
return 0;
}