forked from charlotte-pel/temporalCNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_main_archi.py
114 lines (94 loc) · 4.07 KB
/
run_main_archi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
#!/usr/bin/python
import os, sys
import argparse
import random
from deeplearning.architecture_complexity import *
from outputfiles.save import *
from outputfiles.evaluation import *
from sits.readingsits import *
#-----------------------------------------------------------------------
def main(sits_path, res_path, feature, noarchi, norun):
#-- Creating output path if does not exist
if not os.path.exists(res_path):
os.makedirs(res_path)
#---- Parameters to set
n_channels = 3 #-- NIR, R, G
val_rate = 0.05
#---- Evaluated metrics
eval_label = ['OA', 'train_loss', 'train_time', 'test_time']
#---- String variables
train_str = 'train_dataset'
test_str = 'test_dataset'
#---- Get filenames
train_file = sits_path + '/' + train_str + '.csv'
test_file = sits_path + '/' + test_str + '.csv'
print("train_file: ", train_file)
print("test_file: ", test_file)
#---- output files
res_path = res_path + '/Archi' + str(noarchi) + '/'
if not os.path.exists(res_path):
os.makedirs(res_path)
print("noarchi: ", noarchi)
str_result = feature + '-' + train_str + '-noarchi' + str(noarchi) + '-norun' + str(norun)
res_file = res_path + '/resultOA-' + str_result + '.csv'
res_mat = np.zeros((len(eval_label),1))
traintest_loss_file = res_path + '/trainingHistory-' + str_result + '.csv'
conf_file = res_path + '/confMatrix-' + str_result + '.csv'
out_model_file = res_path + '/bestmodel-' + str_result + '.h5'
#---- Downloading
X_train, polygon_ids_train, y_train = readSITSData(train_file)
X_test, polygon_ids_test, y_test = readSITSData(test_file)
n_classes_test = len(np.unique(y_test))
n_classes_train = len(np.unique(y_train))
if(n_classes_test != n_classes_train):
print("WARNING: different number of classes in train and test")
n_classes = max(n_classes_train, n_classes_test)
y_train_one_hot = to_categorical(y_train, n_classes)
y_test_one_hot = to_categorical(y_test, n_classes)
#---- Adding the features and reshaping the data if necessary
X_train = addingfeat_reshape_data(X_train, feature, n_channels)
X_test = addingfeat_reshape_data(X_test, feature, n_channels)
#---- Normalizing the data per band
minMaxVal_file = '.'.join(out_model_file.split('.')[0:-1])
minMaxVal_file = minMaxVal_file + '_minMax.txt'
if not os.path.exists(minMaxVal_file):
min_per, max_per = computingMinMax(X_train)
save_minMaxVal(minMaxVal_file, min_per, max_per)
else:
min_per, max_per = read_minMaxVal(minMaxVal_file)
X_train = normalizingData(X_train, min_per, max_per)
X_test = normalizingData(X_test, min_per, max_per)
#---- Extracting a validation set (if necesary)
if val_rate > 0:
X_train, y_train, X_val, y_val = extractValSet(X_train, polygon_ids_train, y_train, val_rate)
#--- Computing the one-hot encoding (recomputing it for train)
y_train_one_hot = to_categorical(y_train, n_classes)
y_val_one_hot = to_categorical(y_val, n_classes)
if not os.path.isfile(res_file):
if val_rate==0:
res_mat[0,norun], res_mat[1,norun], model, model_hist, res_mat[2,norun], res_mat[3,norun] = \
runArchi(noarchi, X_train, y_train_one_hot, X_test, y_test_one_hot, out_model_file)
else:
res_mat[0,norun], res_mat[1,norun], model, model_hist, res_mat[2,norun], res_mat[3,norun] = \
runArchi(noarchi, X_train, y_train_one_hot, X_val, y_val_one_hot, X_test, y_test_one_hot, out_model_file)
saveLossAcc(model_hist, traintest_loss_file)
p_test = model.predict(x=X_test)
#---- computing confusion matrices
C = computingConfMatrix(y_test, p_test,n_classes)
#---- saving the confusion matrix
save_confusion_matrix(C, final_class_label, conf_file)
print('Overall accuracy (OA): ', res_mat[0,norun])
print('Train loss: ', res_mat[1,norun])
print('Training time (s): ', res_mat[2,norun])
print('Test time (s): ', res_mat[3,norun])
#---- saving res_file
saveMatrix(np.transpose(res_mat), res_file, eval_label)
#-----------------------------------------------------------------------
if __name__ == "__main__":
try:
main('./example', './example/res', 'SB', 2, 0)
print("0")
except(RuntimeError):
print >> sys.stderr
sys.exit(1)
#EOF